

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Projective varieties of maximal sectional regularity

Markus Brodmann^a, Wanseok Lee^b, Euisung Park^{c,*}, Peter Schenzel^d

- ^a Universität Zürich, Institut für Mathematik, Winterthurerstrasse 190, CH Zürich, Switzerland
- ^b Pukyong National University, Department of Applied Mathematics, Yongso-ro 45, Nam-Gu, Busan 608-737, Republic of Korea
- ^c Korea University, Department of Mathematics, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
- d Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik, Von-Seckendorff-Platz 1, D-06120 Halle (Saale), Germany

ARTICLE INFO

Article history: Received 14 April 2015 Received in revised form 22 April 2016 Available online 2 June 2016

MSC:

Primary: 14H45; 13D02

Communicated by R. Vakil

ABSTRACT

We study projective varieties $X\subset \mathbb{P}^r$ of dimension $n\geq 2$, of codimension $c\geq 3$ and of degree $d\geq c+3$ that are of maximal sectional regularity, i.e. varieties for which the Castelnuovo–Mumford regularity $\operatorname{reg}(\mathcal{C})$ of a general linear curve section is equal to d-c+1, the maximal possible value (see [10]). As one of the main results we classify all varieties of maximal sectional regularity. If X is a variety of maximal sectional regularity, then either (a) it is a divisor on a rational normal (n+1)-fold scroll $Y\subset \mathbb{P}^{n+3}$ or else (b) there is an n-dimensional linear subspace $\mathbb{F}\subset \mathbb{P}^r$ such that $X\cap \mathbb{F}\subset \mathbb{F}$ is a hypersurface of degree d-c+1. Moreover, suppose that n=2 or the characteristic of the ground field is zero. Then in case (b) we obtain a precise description of X as a birational linear projection of a rational normal n-fold scroll.

1. Introduction

Let $X \subset \mathbb{P}^r$ be a nondegenerate irreducible projective variety of dimension n, codimension c > 1 and degree d over an algebraically closed field k. D. Mumford [15] has defined X to be m-regular if its ideal sheaf \mathcal{I}_X satisfies the following vanishing condition

$$H^i(\mathbb{P}^r, \mathcal{I}_X(m-i)) = 0$$
 for all $i \geq 1$.

Mumford's homological description grows out of Castelnuovo's classical results (see [5]). The m-regularity condition implies the (m+1)-regularity condition, so that one defines the Castelnuovo-Mumford regularity reg(X) of X as the least integer m such that X is m-regular. It is well known that if X is m-regular then its homogeneous ideal is generated by forms of degree $\leq m$. This algebraic implication of m-regularity has

^{*} Corresponding author.

E-mail addresses: brodmann@math.unizh.ch (M. Brodmann), wslee@pknu.ac.kr (W. Lee), euisungpark@korea.ac.kr (E. Park), schenzel@informatik.uni-halle.de (P. Schenzel).

an elementary geometric consequence that any (m+1)-secant line to X should be contained in X. We say that a linear space $L \subset \mathbb{P}^r$ is k-secant to X if

$$\dim(X\cap L)=0\quad \mathrm{and}\quad \mathrm{length}(X\cap L):=\dim_{\Bbbk}(\mathcal{O}_{\mathbb{P}^r}/\mathcal{I}_X+\mathcal{I}_L)\geq k.$$

A well known conjecture due to Eisenbud and Goto (see [6]) says that

$$reg(X) \le d - c + 1. \tag{1.1}$$

Obviously this conjecture implies the following conjecture

X has no proper k-secant line if
$$k > d - c + 1$$
. (1.2)

So far the conjecture (1.1) has been proved only for irreducible but not necessarily smooth curves by Gruson–Lazarsfeld–Peskine [10] and for smooth complex surfaces by H. Pinkham [20] and R. Lazarsfeld [14]. Moreover, in [10] the curves in \mathbb{P}^r whose regularity takes the maximally possible value d-r+2 are completely classified: they are either of degree $\leq r+1$ or else smooth rational curves having a (d-r+2)-secant line. The statement (1.2) is known to be true when X is locally Cohen–Macaulay (see Theorem 1 in [17]). But it is still unknown for arbitrary varieties.

The main subject of the present paper is to study the geometry of proper (d-c+1)-secant lines to a projective variety. To this aim, we investigate the extremal secant locus $\Sigma(X)$ of X, that is, the closure of the set of all proper (d-c+1)-secant lines to X in the Grassmannian $\mathbb{G}(1,\mathbb{P}^r)$. Of course, if the extremal secant locus of X is nonempty then its regularity is at least d-c+1 and so such a variety will play an important role in the natural problem of classifying all extremal varieties with respect to the above regularity conjecture. For $d \geq c+3$, Gruson–Lazarsfeld–Peskine's result in [10] provides a complete classification of curves having a (d-c+1)-secant line. They should be smooth and rational. M.A. Bertin [1] generalizes this result to higher dimensional smooth varieties. She proves the conjecture (1.1) for smooth rational scrolls – which is reproved in [13] – and shows that if X is a smooth variety having a (d-c+1)-secant line then it should be the linear regular projection of a smooth rational normal scroll. Later, A. Noma [17] obtains a very nice description of those smooth rational scrolls.

In Theorem 3.4 we show that if $c \geq 3$ and $d \geq c+3$, then the dimension of $\Sigma(X)$ is at most 2n-2 and the equality is attained if and only if a general linear curve section of X has the maximal Castelnuovo–Mumford regularity d-c+1. We will say that X is a variety of maximal sectional regularity if its general linear curve section is of maximal regularity (cf. [4]).

To complete the result starting with Theorem 3.4, it is natural to ask for a classification of all varieties of maximal sectional regularity. This is the contents of Theorem 6.3 and Theorem 7.1. More precisely, for $c \geq 3$ and $d \geq c + 3$ we obtain a classification of surfaces of maximal sectional regularity in Theorem 6.3 and a classification of higher dimensional varieties of maximal sectional regularity in Theorem 7.1. It turns out that $X \subset \mathbb{P}^r$ is variety of maximal sectional regularity if and only if it is one of the followings:

- (a) c=3 and X is a divisor of the (n+1)-fold scroll $Y=S(\underbrace{0,\dots,0}_{(n-2)\text{-times}},1,1,1)\subset \mathbb{P}^{n+3}$ such that X is
 - linearly equivalent to H+(d-3)F, where H is the hyperplane divisor of Y and $F\subset Y$ is a linear subspace of dimension n;
- (b) There exists an *n*-dimensional linear subspace $\mathbb{F} \subset \mathbb{P}^r$ such that $X \cap \mathbb{F}$ in \mathbb{F} is a hypersurface of degree d-c+1.

In particular, there exist varieties $X \subset \mathbb{P}^r$ of maximal sectional regularity of dimension n, of codimension c and of degree d for any given (n, c, d) with $n \geq 2$, $c \geq 3$ and $d \geq c + 3$. Furthermore, assume that $\operatorname{char}(\Bbbk) = 0$

Download English Version:

https://daneshyari.com/en/article/4595729

Download Persian Version:

https://daneshyari.com/article/4595729

<u>Daneshyari.com</u>