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1. Introduction

Let k be a field of characteristic different from 2 and let L/k be a finite Galois extension with Galois
group G. Let A(G) denote the Burnside ring of G and let GW (k) denote the Grothendieck—Witt ring
of k. Recall that, as abelian groups, A(G) is freely generated under disjoint union by cosets G/H where
H runs through a set of representatives for conjugacy classes of subgroups, and GW (k) is generated by
1-dimensional quadratic forms (a), where a runs through the group of square classes k*/(k*)?, under
orthogonal sum (a) + (b) = (a, b). Multiplication in A(G) is given by cartesian product with identity G/G
and multiplication in GW (k) is given by the Kronecker product (a)(b) = (ab) with identity (1). Following
the construction in [1, Appendix BJ, the Dress map hp, : A(G) — GW (k) is a ring homomorphism that
takes the coset G/H to the trace form trym (1) u, the quadratic form x trLH/ka. (Our restriction on
the characteristic of k is necessary for hy,/, to be well defined.)

A particular point of interest is that the Dress map appears naturally in the study of equivariant and
motivic stable homotopy theory. Heller and Ormsby [2, §4] construct a strong symmetric monoidal trian-
gulated functor ¢} Ik SHg — SHy from the stable G-equivariant homotopy category to the stable motivic
homotopy category over k. This functor induces a homomorphism between the endomorphism rings of the
unit objects in each category, which are in fact A(G) and GW (k), respectively. In [2, Proposition 3.1], Heller
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and Ormsby show that this homomorphism agrees with hp, .. In particular, fullness and faithfulness of ¢} Jk
are obstructed by surjectivity and injectivity of hy, /. respectively.

The main goal of this note is to investigate when the Dress map, and thereby ¢} Ik is injective or surjective.
While Heller and Ormsby have resolved the investigation when Ay, is an isomorphism [2, Theorem 3.4/,
we proceed by examining injectivity and surjectivity separately.

When L = k it is obvious that hp,/; is injective. The following theorem gives a complete account of when
hy i is injective in the remaining cases.

Theorem 1. For a finite nontrivial Galois extension L/k, hy y is injective if and only if L = k(\/a) where
a € k* is not a sum of squares in k*.

The proof of Theorem 1 is given in §2. Note that Theorem 1, taken with [2, Proposition 3.1], immediately
gives the following corollary.

Corollary 2. Ifcz/k is faithful, then either L/k is the trivial extension or of the form described in Theorem 1.

The following theorem gives a complete account of when the Dress map is surjective.

Theorem 3. For a finite Galois extension L/k, hy y, is surjective if and only if k is quadratically closed in L.

The proof of Theorem 3 is given in §3. The following corollary is immediate.

Corollary 4. If cz/k is full, then L/k is of the form described in Theorem 3.

Theorems 1 and 3 combine to replicate Heller and Ormsby’s result that for a finite Galois extension L/k,
hi i is an isomorphism if and only if either k is quadratically closed and L = k, or k is euclidean and
L = k(7). If L/k is the trivial extension then Theorem 3 requires that & be quadratically closed, otherwise
Theorem 1 requires that L = k(y/a) and k*/(k*)? contains an element that is not a sum of squares. In
the latter case, k must be formally real and then Theorem 3 requires that k% /(k*)% = {(k*)2, a(k*)?}, i.e.
|k* /(k*)?| = 2, so k is euclidean and o = —1.

2. Proof of Theorem 1

We begin by stating a number of results that are necessary in the proof of Theorem 1. Many of these
results are standard and are stated without proof.

Proposition 5. Let L/k be a finite Galois extension.

L. If L =k, then trg, (1)L = (1).
2. If L =k(a), then tr, /(1)L = (2,20a).
3. If L = k(\/an,/az), then tr, /(1)L = (1, a1, a0, yaa).

The following is a standard result from Galois theory.

Proposition 6. Let L/k be a finite Galois extension with Galois group G. If G = 7 /47, then there is a field
E between L and k such that E = k(\/a) where a = a® + b* for some a,b € k*.

The following theorem is taken directly from Lam [3, Proposition 6.14].
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