Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Injectivity and surjectivity of the Dress map

Ricardo G Rojas-Echenique

Department of Mathematics, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA

ARTICLE INFO

Article history: Received 6 February 2016 Received in revised form 20 May 2016 Available online 31 May 2016 Communicated by C.A. Weibel

MSC: 11E81; 19A22; 19G99; 14F42; 55P91 ABSTRACT

For a nontrivial finite Galois extension L/k (where the characteristic of k is different from 2) with Galois group G, we prove that the Dress map $h_{L/k}: A(G) \to GW(k)$ is injective if and only if $L = k(\sqrt{\alpha})$ where α is not a sum of squares in k^{\times} . Furthermore, we prove that $h_{L/k}$ is surjective if and only if k is quadratically closed in L. As a consequence, we give strong necessary conditions for faithfulness of the Heller–Ormsby functor $c^*_{L/k}: SH_G \to SH_k$, as well as strong necessary conditions for fullness of $c^*_{L/k}$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let k be a field of characteristic different from 2 and let L/k be a finite Galois extension with Galois group G. Let A(G) denote the Burnside ring of G and let GW(k) denote the Grothendieck–Witt ring of k. Recall that, as abelian groups, A(G) is freely generated under disjoint union by cosets G/H where H runs through a set of representatives for conjugacy classes of subgroups, and GW(k) is generated by 1-dimensional quadratic forms $\langle a \rangle$, where a runs through the group of square classes $k^{\times}/(k^{\times})^2$, under orthogonal sum $\langle a \rangle + \langle b \rangle = \langle a, b \rangle$. Multiplication in A(G) is given by cartesian product with identity G/Gand multiplication in GW(k) is given by the Kronecker product $\langle a \rangle \langle b \rangle = \langle ab \rangle$ with identity $\langle 1 \rangle$. Following the construction in [1, Appendix B], the Dress map $h_{L/k} : A(G) \to GW(k)$ is a ring homomorphism that takes the coset G/H to the trace form $\operatorname{tr}_{L^H/k} \langle 1 \rangle_{L^H}$, the quadratic form $x \mapsto \operatorname{tr}_{L^H/k} x^2$. (Our restriction on the characteristic of k is necessary for $h_{L/k}$ to be well defined.)

A particular point of interest is that the Dress map appears naturally in the study of equivariant and motivic stable homotopy theory. Heller and Ormsby [2, §4] construct a strong symmetric monoidal triangulated functor $c_{L/k}^*$: SH_G \rightarrow SH_k from the stable *G*-equivariant homotopy category to the stable motivic homotopy category over *k*. This functor induces a homomorphism between the endomorphism rings of the unit objects in each category, which are in fact A(G) and GW(k), respectively. In [2, Proposition 3.1], Heller

 $\label{eq:http://dx.doi.org/10.1016/j.jpaa.2016.05.013} 0022\text{-}4049/@$ 2016 Elsevier B.V. All rights reserved.

E-mail address: rojasecr@reed.edu.

and Ormsby show that this homomorphism agrees with $h_{L/k}$. In particular, fullness and faithfulness of $c_{L/k}^*$ are obstructed by surjectivity and injectivity of $h_{L/k}$ respectively.

The main goal of this note is to investigate when the Dress map, and thereby $c_{L/k}^*$, is injective or surjective. While Heller and Ormsby have resolved the investigation when $h_{L/k}$ is an isomorphism [2, Theorem 3.4], we proceed by examining injectivity and surjectivity separately.

When L = k it is obvious that $h_{L/k}$ is injective. The following theorem gives a complete account of when $h_{L/k}$ is injective in the remaining cases.

Theorem 1. For a finite nontrivial Galois extension L/k, $h_{L/k}$ is injective if and only if $L = k(\sqrt{\alpha})$ where $\alpha \in k^{\times}$ is not a sum of squares in k^{\times} .

The proof of Theorem 1 is given in §2. Note that Theorem 1, taken with [2, Proposition 3.1], immediately gives the following corollary.

Corollary 2. If $c_{L/k}^*$ is faithful, then either L/k is the trivial extension or of the form described in Theorem 1.

The following theorem gives a complete account of when the Dress map is surjective.

Theorem 3. For a finite Galois extension L/k, $h_{L/k}$ is surjective if and only if k is quadratically closed in L.

The proof of Theorem 3 is given in §3. The following corollary is immediate.

Corollary 4. If $c_{L/k}^*$ is full, then L/k is of the form described in Theorem 3.

Theorems 1 and 3 combine to replicate Heller and Ormsby's result that for a finite Galois extension L/k, $h_{L/k}$ is an isomorphism if and only if either k is quadratically closed and L = k, or k is euclidean and L = k(i). If L/k is the trivial extension then Theorem 3 requires that k be quadratically closed, otherwise Theorem 1 requires that $L = k(\sqrt{\alpha})$ and $k^{\times}/(k^{\times})^2$ contains an element that is not a sum of squares. In the latter case, k must be formally real and then Theorem 3 requires that $k^{\times}/(k^{\times})^2 = \{(k^{\times})^2, \alpha(k^{\times})^2\}$, *i.e.* $|k^{\times}/(k^{\times})^2| = 2$, so k is euclidean and $\alpha = -1$.

2. Proof of Theorem 1

We begin by stating a number of results that are necessary in the proof of Theorem 1. Many of these results are standard and are stated without proof.

Proposition 5. Let L/k be a finite Galois extension.

1. If L = k, then $tr_{L/k} \langle 1 \rangle_L = \langle 1 \rangle$.

- 2. If $L = k(\sqrt{\alpha})$, then $tr_{L/k}\langle 1 \rangle_L = \langle 2, 2\alpha \rangle$.
- 3. If $L = k(\sqrt{\alpha_1}, \sqrt{\alpha_2})$, then $tr_{L/k} \langle 1 \rangle_L = \langle 1, \alpha_1, \alpha_2, \alpha_1 \alpha_2 \rangle$.

The following is a standard result from Galois theory.

Proposition 6. Let L/k be a finite Galois extension with Galois group G. If $G \cong \mathbb{Z}/4\mathbb{Z}$, then there is a field E between L and k such that $E = k(\sqrt{\alpha})$ where $\alpha = a^2 + b^2$ for some $a, b \in k^{\times}$.

The following theorem is taken directly from Lam [3, Proposition 6.14].

Download English Version:

https://daneshyari.com/en/article/4595740

Download Persian Version:

https://daneshyari.com/article/4595740

Daneshyari.com