

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

Mathieu–Zhao spaces of univariate polynomial rings with non-zero strong radical

Arno van den Essen*, Simeon Nieman

 $Department\ of\ Mathematics,\ Radboud\ University\ Nijmegen,\ Postbus\ 9010,\ 6500\ GL\ Nijmegen,\ The\ Netherlands$

ARTICLE INFO

Article history: Received 25 March 2015 Received in revised form 17 October 2015

Available online 8 March 2016 Communicated by R. Vakil

MSC:

13C99; 13F20

ABSTRACT

We describe all Mathieu–Zhao spaces of the univariate polynomial ring k[t] (k an algebraically closed field of characteristic zero) which have a non-zero strong radical. © 2016 Elsevier B.V. All rights reserved.

0. Introduction

Let k be any field and denote by R a commutative k-algebra. By a subspace V of R we will always mean a k-linear subspace. In [3] the authors introduced the following notions: I_V , the largest ideal of R contained in V, r(V), the radical of V, being the set of $a \in R$ such that for some natural number N all elements a^m with $m \ge N$ belong to V and finally sr(V), the strong radical of V, being the set of all $a \in R$ such that for each $b \in R$ there exists some natural number N_b such that $ba^m \in V$, for all $m \ge N_b$. One easily verifies that $sr(V) \subseteq r(V)$. The spaces where equality occurs are called Mathieu-Zhao spaces of R. Mathieu subspaces were introduced (for more general rings) by Zhao in [9] in order to study several conjectures which all imply the Jacobian Conjecture (see also [1,2,7,8]). The name was changed into Mathieu-Zhao spaces, MZ-spaces, by the first author in [4].

Clearly every ideal of k[t] (the univariate polynomial ring over k) is an MZ-space of it. The ideals of k[t] are easy to describe, they are all principal. On the other hand, describing MZ-spaces of k[t] is still far to complicated. For example the set M of all $f \in \mathbb{C}[t]$ such $\int_0^1 f(t)dt = 0$ is an MZ-space of $\mathbb{C}[t]$ with r(M) = 0. Proving this fact is not at all straightforward (see [5]).

E-mail address: essen@math.ru.nl (A. van den Essen).

^{*} Corresponding author.

In this paper we make a first step towards a description of the MZ-spaces of k[t]. More precisely, we describe all MZ-spaces of k[t] whose strong radical is non-zero, in case k is an algebraically closed field of characteristic zero. This result, the main theorem of this paper, was already obtained in [6].

The proof of the main theorem is based on two ingredients. The first one is Zhao's idempotency theorem (theorem 4.2, [10]) which asserts the following:

Zhao's idempotency theorem. Let k be a field and A an associative k-algebra, V a k-subspace of A such that all elements of r(V) are algebraic over k. Then V is a (left) MZ-space of A if and only if $Ae \subseteq V$ for every idempotent $e \in V$.

The second ingredient is a result from the theory of linear recurrence relations. We briefly recall this classical result.

Let k be an algebraically closed field $N \ge 1$ a positive integer and $c_1, \dots, c_N \in k$, $c_N \ne 0$. An infinite sequence (a_0, a_1, a_2, \dots) of elements in k is said to satisfy a recurrence relation defined by the c_i if

$$a_{N+i} = c_1 a_{N+i-1} + \cdots + c_N a_i$$
, for all $i \ge 0$

The set of all sequences (a_0, a_1, a_2, \cdots) satisfying this recurrence relation forms a k-vector space, denoted F, of dimension N. More precisely one can give a basis of F as follows. Consider the *characteristic equation*

$$t^{N} - c_{1}t^{N-1} \cdot \cdot \cdot - c_{N-1}t - c_{N} = 0$$

Let Λ be the set of different zeroes of this equation and denote for each $\lambda \in \Lambda$ its multiplicity by $m(\lambda)$. For each $\lambda \in \Lambda$ and each $0 \le i < m(\lambda)$ the sequence $f_{i,\lambda} := \{n^i \lambda^n\}_{n \ge 0}$ belongs to F. The set of all such sequences forms a k-basis of F. In particular if $a := \{a_n\}_{n \ge 0}$ satisfies the recurrence relation defined by the c_i , then there exist $b_{i,\lambda} \in k$ such that

$$a = \sum_{\lambda \in \Lambda} \sum_{0 \le i < m(\lambda)} b_{i,\lambda} f_{i,\lambda}$$

So, looking at the n-term in these sequences we get

$$a_n = \sum_{\lambda \in \Lambda} \sum_{0 \le i < m(\lambda)} b_{i,\lambda} n^i \lambda^n$$
, for all $n \ge 0$

1. Preliminaries

From now on V is a k-subspace of k[t], strictly contained in it, and k is an algebraically closed field of characteristic zero. It is shown in [3] that $sr(V) = r(I_V)$. So in particular we get that sr(V) is non-zero if and only if I_V is non-zero. Since we are interested in describing the MZ-spaces with strong radical non-zero, we assume from now on that I_V is non-zero. We will write I instead of I_V . Since V is strictly contained in k[t], I = k[t]f for some polynomial f of positive degree. Say

$$f = \prod_{\lambda \in \Lambda} (t - \lambda)^{m(\lambda)}$$

where Λ denotes the set of different zeroes of f in k and $m(\lambda)$ denotes the multiplicity of λ . We may assume that Λ does not contain 0 (just replace t by t-c for some suitable $c \in k$ and observe that sending t to t-c is a k-automorphism of k[t]). Since I is contained in V, it is shown in [10] that V is an MZ-pace of k[t] if and only if M := V/I is an MZ-space of the ring A := k[t]/I. So we need to investigate MZ-spaces of A.

Download English Version:

https://daneshyari.com/en/article/4595779

Download Persian Version:

https://daneshyari.com/article/4595779

<u>Daneshyari.com</u>