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exceptional collection? We prove that such full exceptional collection exists if and
only if the geometric genus of the curve equals to 0. Moreover we can also prove
that a curve with geometric genus equal or greater than 1 cannot have a categorical
resolution of singularities which has a tilting object. The proofs of both results are
MSC: given by a careful study of the Grothendieck group and the Picard group of that
14H20; 14F05; 18E30; 18F30 curve.
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1. Introduction

For a triangulated category C, having a full exceptional collection is a very good property. Recall that
the definition of full exceptional collection is as follows.

Definition 1.1. A full exceptional collection of a triangulated category C is a collection {A; ... A, } of objects
such that

(1) for all ¢ one has Hom¢(A;, A;) = k and Home(4;, A;[l]) = 0 for all I # 0;
(2) for all 1 <i < j <n one has Hom¢(A;, A;[l]) =0 for all [ € Z;
(3) the smallest triangulated subcategory of C containing A, ..., A, coincides with C.

However it is not very common that a triangulated category C has a full exceptional collection. In
algebraic geometry, it is well-known that for a smooth projective curve X over an algebraically closed
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field &, its bounded derived category of coherent sheaves D?(coh(X)) has a full exceptional collection if and
only if the genus of X equals to 0.

Moreover for a singular projective curve X and a (geometric) resolution of singularities X = X , the
geometric genus of X and X are equal, hence it is clear that Db(coh()z )) has a full exceptional collection if
and only if the geometric genus of X equals to 0.

In this paper we would like to consider the categorical resolution of X, which is introduced in [4].

Definition 1.2. (See [4] Definition 3.2 or [5] Definition 1.3.) A categorical resolution of a scheme X is a
smooth, cocomplete, compactly generated, triangulated category Z with an adjoint pair of triangulated
functors

7™ :D(X) = J and 7. : 7 — D(X)
such that

(1) meom™ = id;
(2) both 7, and 7* commute with arbitrary direct sums;
(3) m(7¢) C Db(coh(X)) where .7¢ denotes the full subcategory of .7 which consists of compact objects.

Remark 1. The first property implies that n* is fully faithful and the second property implies that
7r>|<(]:)1.7erf(‘X)) C Je.

Remark 2. The categorical resolution of X is not necessarily unique.

Remark 3. In this paper we will not discuss further on the smoothness of a triangulated category and the
interested readers may refer to [5] Section 1. Moreover, the main result in this paper does not depend on
the smoothness, see Corollaries 3.6 and 4.8 below.

We are interested in the question that when does 7¢ have a full exceptional collection. If X is an
projective curve of geometric genus g = 0, it can be deduced from the construction in [5] that there exists
a categorical resolution (7, 7* m,) of X such that 7€ has a full exceptional collection. See Proposition 4.1
below.

The main result of this paper is the following theorem, which rules out the possibility for any categorical
resolution of a curve with geometric genus g > 1 has a full exceptional collection.

Theorem 1.1. (See Theorem 4.9 below.) Let X be a projective curve over an algebraically closed field k. Let
(T, 7%, 7«) be a categorical resolution of X. If the geometric genus of X is > 1, then T¢ cannot have a full
exceptional collection.

In other words, X has a categorical resolution which admits a full exceptional collection if and only if the
geometric genus of X equals to 0.

Remark 4. In a recent paper [1] a result which is related to the above claim has been proved. Actually it
has been proved that if X is a reduced rational curve, then there exists a categorical resolution (7, 7*, )
of X such that .7¢ has a tilting object, which in general does not come from an exceptional collection. See
[1] Theorem 7.4.

Recall that the definition of tilting object is given as follows.

Definition 1.3. Let C be a triangulated category. A tilting object is an object L of C which satisfies the
following properties.
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