Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

The full exceptional collections of categorical resolutions of curves

Zhaoting Wei

Department of Mathematics, Indiana University, 831 E 3rd Street, Bloomington, IN 47405, United States

ABSTRACT

curve.

ARTICLE INFO

Article history: Received 15 June 2015 Received in revised form 21 February 2016 Available online 10 March 2016 Communicated by R. Vakil

MSC: 14H20; 14F05; 18E30; 18F30

Keywords: Categorical resolution Singular curve K-theory Exceptional collection Tilting object

1. Introduction

For a triangulated category C, having a full exceptional collection is a very good property. Recall that the definition of full exceptional collection is as follows.

Definition 1.1. A full exceptional collection of a triangulated category C is a collection $\{A_1 \dots A_n\}$ of objects such that

- (1) for all *i* one has $\operatorname{Hom}_{\mathcal{C}}(A_i, A_i) = k$ and $\operatorname{Hom}_{\mathcal{C}}(A_i, A_i[l]) = 0$ for all $l \neq 0$;
- (2) for all $1 \leq i < j \leq n$ one has $\operatorname{Hom}_{\mathcal{C}}(A_j, A_i[l]) = 0$ for all $l \in \mathbb{Z}$;
- (3) the smallest triangulated subcategory of C containing A_1, \ldots, A_n coincides with C.

However it is not very common that a triangulated category C has a full exceptional collection. In algebraic geometry, it is well-known that for a smooth projective curve X over an algebraically closed

E-mail address: zhaotwei@indiana.edu.

 $\label{eq:http://dx.doi.org/10.1016/j.jpaa.2016.02.018} 0022\text{-}4049/ \ensuremath{\odot}$ 2016 Elsevier B.V. All rights reserved.

This paper gives a complete answer of the following question: which (singular,

projective) curves have a categorical resolution of singularities which admits a full

exceptional collection? We prove that such full exceptional collection exists if and

only if the geometric genus of the curve equals to 0. Moreover we can also prove

that a curve with geometric genus equal or greater than 1 cannot have a categorical

resolution of singularities which has a tilting object. The proofs of both results are given by a careful study of the Grothendieck group and the Picard group of that

OURNAL OF PURE AND field k, its bounded derived category of coherent sheaves $D^b(coh(X))$ has a full exceptional collection if and only if the genus of X equals to 0.

Moreover for a singular projective curve X and a (geometric) resolution of singularities $\widetilde{X} \to X$, the geometric genus of \widetilde{X} and X are equal, hence it is clear that $D^b(\operatorname{coh}(\widetilde{X}))$ has a full exceptional collection if and only if the geometric genus of X equals to 0.

In this paper we would like to consider the categorical resolution of X, which is introduced in [4].

Definition 1.2. (See [4] Definition 3.2 or [5] Definition 1.3.) A categorical resolution of a scheme X is a smooth, cocomplete, compactly generated, triangulated category \mathscr{T} with an adjoint pair of triangulated functors

$$\pi^* : \mathrm{D}(X) \to \mathscr{T} \text{ and } \pi_* : \mathscr{T} \to \mathrm{D}(X)$$

such that

(1) $\pi_* \circ \pi^* = id;$

(2) both π_* and π^* commute with arbitrary direct sums;

(3) $\pi_*(\mathscr{T}^c) \subset \mathrm{D}^b(\mathrm{coh}(X))$ where \mathscr{T}^c denotes the full subcategory of \mathscr{T} which consists of compact objects.

Remark 1. The first property implies that π^* is fully faithful and the second property implies that $\pi^*(D^{\text{perf}}(X)) \subset \mathscr{T}^c$.

Remark 2. The categorical resolution of X is not necessarily unique.

Remark 3. In this paper we will not discuss further on the smoothness of a triangulated category and the interested readers may refer to [5] Section 1. Moreover, the main result in this paper does not depend on the smoothness, see Corollaries 3.6 and 4.8 below.

We are interested in the question that when does \mathscr{T}^c have a full exceptional collection. If X is an projective curve of geometric genus g = 0, it can be deduced from the construction in [5] that there exists a categorical resolution $(\mathscr{T}, \pi^*, \pi_*)$ of X such that \mathscr{T}^c has a full exceptional collection. See Proposition 4.1 below.

The main result of this paper is the following theorem, which rules out the possibility for any categorical resolution of a curve with geometric genus $g \ge 1$ has a full exceptional collection.

Theorem 1.1. (See Theorem 4.9 below.) Let X be a projective curve over an algebraically closed field k. Let $(\mathscr{T}, \pi^*, \pi_*)$ be a categorical resolution of X. If the geometric genus of X is ≥ 1 , then \mathscr{T}^c cannot have a full exceptional collection.

In other words, X has a categorical resolution which admits a full exceptional collection if and only if the geometric genus of X equals to 0.

Remark 4. In a recent paper [1] a result which is related to the above claim has been proved. Actually it has been proved that if X is a reduced rational curve, then there exists a categorical resolution $(\mathscr{T}, \pi^*, \pi_*)$ of X such that \mathscr{T}^c has a tilting object, which in general does not come from an exceptional collection. See [1] Theorem 7.4.

Recall that the definition of tilting object is given as follows.

Definition 1.3. Let C be a triangulated category. A tilting object is an object L of C which satisfies the following properties.

Download English Version:

https://daneshyari.com/en/article/4595782

Download Persian Version:

https://daneshyari.com/article/4595782

Daneshyari.com