On parameterized differential Galois extensions

CrossMark

Omar León Sánchez ${ }^{\text {a }}$, Joel Nagloo ${ }^{\text {b,*,1 }}$
${ }^{\text {a }}$ McMaster University, Department of Mathematics and Statistics, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
${ }^{\text {b }}$ Graduate Center, Mathematics, City University of New York, 365 Fifth Avenue, New York, NY 10016-4309, United States

Article history:
Received 22 July 2015
Received in revised form 10
November 2015
Available online 6 January 2016
Communicated by C.A. Weibel

MSC:

03C60; 12H05

Abstract

We prove some existence results on parameterized strongly normal extensions for logarithmic equations. We generalize a result in Wibmer (2012) [16]. We also consider an extension of the results in Kamensky and Pillay (2014) [4] from the ODE case to the parameterized PDE case. More precisely, we show that if \mathcal{D} and Δ are two distinguished sets of derivations and $\left(K^{\mathcal{D}}, \Delta\right)$ is existentially closed in (K, Δ), where K is a $\mathcal{D} \cup \Delta$-field of characteristic zero, then every (parameterized) logarithmic equation over K has a parameterized strongly normal extension.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $\Pi=\mathcal{D} \cup \Delta=\left\{D_{1}, \ldots, D_{r}\right\} \cup\left\{\delta_{1}, \ldots, \delta_{m-r}\right\}$ be a set of commuting derivations, with $m \geq r>0$, and K be a Π-field of characteristic zero. Consider the (parameterized) system of homogeneous linear differential equations

$$
D_{1} Y=A_{1} Y, \ldots, D_{r} Y=A_{r} Y, \quad \text { with } Y \text { ranging in } \mathrm{GL}_{n}
$$

where the A_{i} 's are $n \times n$ matrices with entries from the differential field K satisfying the usual integrability condition

$$
D_{i} A_{j}-D_{j} A_{i}=\left[A_{i}, A_{j}\right], \quad \text { for } i, j=1, \ldots, r
$$

Recall that a parameterized Picard-Vessiot (PPV) extension of K for (\star) is a Π-field extension L of K such that

[^0]1. L is generated over K by the entries (and all Π-derivatives) of a matrix solution $Z \in \mathrm{GL}_{n}(L)$ of (\star); in other words, $L=K\langle Z\rangle_{\Pi}=K\langle Z\rangle_{\Delta}$, and
2. $L^{\mathcal{D}}=K^{\mathcal{D}}$, that is the field of \mathcal{D}-constants of L is the same as the field of \mathcal{D}-constants of K.

Above, and henceforth, we use the notation $K\langle Z\rangle_{\Pi}$ for the Π-field generated by Z over K, and $K\langle Z\rangle_{\Delta}$ for the Δ-field generated by Z over K.

For an example, take $K=\left(\mathbb{C}(x, t),\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial t}\right\}\right)$, where we think of \mathcal{D} as $\left\{\frac{\partial}{\partial x}\right\}$ and the parametric derivations Δ as $\left\{\frac{\partial}{\partial t}\right\}$. Let ($*$) be

$$
\begin{equation*}
\frac{\partial y}{\partial x}=\frac{t}{x} y \tag{1}
\end{equation*}
$$

Clearly, $y=x^{t}$ is a solution and as $\frac{\partial}{\partial t}\left(x^{t}\right)=x^{t} \cdot \log x$, one is interested in the field $L=K\left(x^{t}, \log x\right)$. It turns out (see [2, Example 3.1]) that L is indeed a PPV extension of K for equation (1).

Parameterized Picard-Vessiot extensions were introduced in [2] by Cassidy and Singer as a fundamental tool for studying parametric equations such as equation (\star). In particular, they capture valuable information about the algebraic relations that exist among a set of solutions as well as their Δ-algebraic relations (where Δ is the set of parametric derivations). PPV extensions have attracted much attention in recent years and we direct the reader to [10] for some applications of the parameterized Picard-Vessiot theory. It should be noted that PPV extensions do not always exist; for example, consider the differential field $\left(\mathbb{R}(t), D, \frac{d}{d t}\right)$ where D is the trivial derivation. Adjoin to $\mathbb{R}(t)$ the general solution b of the system

$$
(D y)^{2}+4 y^{2}+1=0 \quad \text { and } \quad \frac{d y}{d t}=0 .
$$

Let $K=\mathbb{R}(t)\langle b\rangle_{\Pi}=\mathbb{R}(t, b, D b)$. Note that K is a Π-field where we are thinking of $\mathcal{D}=\{D\}$ and a parametric derivation $\Delta=\left\{\frac{d}{d t}\right\}$. Note that if the \mathcal{D}-constants $K^{\mathcal{D}}$ were not algebraic over $\mathbb{R}(t)$ then K would be algebraic over $K^{\mathcal{D}}$, but a field of constants is always relatively algebraically closed and so we would get that $K=K^{\mathcal{D}}$ which is impossible as $D b \neq 0$. Thus, $K^{\mathcal{D}}$ is algebraic over $\mathbb{R}(t)$. On the other hand, the polynomial $z^{2}+4 x^{2}+1$ is absolutely irreducible, so $\mathbb{R}(t)$ is relatively algebraically closed in $\mathbb{R}(t, b, D b)=K$ (see [13, Theorem 10]). Hence, $K^{\mathcal{D}}=\mathbb{R}(t)$. Now, take (\star) to be the linear differential equation

$$
D^{2} y+y=0 .
$$

The same argument as in $[12, \S 6]$ shows that if f is a nontrivial solution of this equation, then either

$$
\frac{b f^{2}+(D b)(D f) f-b(D f)^{2}}{f^{2}+(D f)^{2}}
$$

is a \mathcal{D}-constant which is not in $\mathbb{R}(t)$, or $i \in K\langle f\rangle_{\Pi}$ (where $i^{2}=-1$). In both cases we obtain a \mathcal{D}-constant of $K\langle f\rangle_{\Pi}$ that is not in $K^{\mathcal{D}}$. Thus, there are no PPV extensions of K for this equation.

It has been known for quite some time that to get a general existence result, one needs to impose additional assumptions on $K^{\mathcal{D}}$. In [2], Cassidy and Singer showed that if $\left(K^{\mathcal{D}}, \Delta\right)$ is Δ-closed, then the existence of a PPV extension of K is guaranteed. This was later improved in [3] by Gillet et al. where they show that the assumption can be weaken to ($K^{\mathcal{D}}, \Delta$) being existentially closed in (K, Δ); that is, every Δ-algebraic variety over $K^{\mathcal{D}}$ with a K-point has also a $K^{\mathcal{D}}$-point. Examples of the latter occur for instance when K is formally real and $\left(K^{\mathcal{D}}, \Delta\right)$ is a real closed ordered differential field; more precisely, $\left(K^{\mathcal{D}}, \Delta\right)$ is a model of $R C F \cup U C_{m-r}$ (the theory of real closed ordered differential fields with $m-r$ commuting derivations) introduced by Tressl in [15, §8] (in the case $m-r=1$ this theory was introduced by Singer [14]). A similar

https://daneshyari.com/en/article/4595789

Download Persian Version:
https://daneshyari.com/article/4595789

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: oleonsan@math.mcmaster.ca (O. León Sánchez), jnagloo@gc.cuny.edu (J. Nagloo).
 ${ }^{1}$ Joel Nagloo was partially supported by NSF grant CCF-0952591.

