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consider an extension of the results in Kamensky and Pillay (2014) [4] from the
ODE case to the parameterized PDE case. More precisely, we show that if D and
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(K, A), where K is a DU A-field of characteristic zero, then every (parameterized)

MSC: logarithmic equation over K has a parameterized strongly normal extension.
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1. Introduction

Let I=DUA ={Dy,...,D,}U{d1,...,0m—r} be a set of commuting derivations, with m > r > 0, and
K be a II-field of characteristic zero. Consider the (parameterized) system of homogeneous linear differential
equations

DY =AY, ..., D.Y =AY, withY ranging in GL,, (%)

where the A;’s are n x n matrices with entries from the differential field K satisfying the usual integrability
condition

DiAj—Din:[Ai,Aj], for i,jzl,...,T.

Recall that a parameterized Picard—Vessiot (PPV) extension of K for (x) is a II-field extension L of K such
that
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1. L is generated over K by the entries (and all II-derivatives) of a matrix solution Z € GL, (L) of (x); in
other words, L = K (Z); = K (Z) 5, and
2. LP = KD, that is the field of D-constants of L is the same as the field of D-constants of K.

Above, and henceforth, we use the notation K (Z); for the II-field generated by Z over K, and K (Z)  for
the A-field generated by Z over K.

For an example, take K = (C(z,t), {2, 2}), where we think of D as {Z} and the parametric derivations
Aas {2} Let (x) be

% = %y (1)
Clearly, y = ¢ is a solution and as £ (') = ! - logz, one is interested in the field L = K (a?, logz). It turns
out (see [2, Example 3.1]) that L is indeed a PPV extension of K for equation (1).

Parameterized Picard-Vessiot extensions were introduced in [2] by Cassidy and Singer as a fundamental
tool for studying parametric equations such as equation (x). In particular, they capture valuable information
about the algebraic relations that exist among a set of solutions as well as their A-algebraic relations (where
A is the set of parametric derivations). PPV extensions have attracted much attention in recent years and
we direct the reader to [10] for some applications of the parameterized Picard—Vessiot theory. It should
be noted that PPV extensions do not always exist; for example, consider the differential field (R(¢), D, %)
where D is the trivial derivation. Adjoin to R(¢) the general solution b of the system

dy _

=0.
dt

(Dy)* +4y*+1=0 and
Let K = R(t) (b); = R(¢,b, Db). Note that K is a II-field where we are thinking of D = {D} and a
parametric derivation A = {£}. Note that if the D-constants KP were not algebraic over R(t) then K
would be algebraic over K, but a field of constants is always relatively algebraically closed and so we
would get that K = K which is impossible as Db # 0. Thus, K is algebraic over R(¢). On the other
hand, the polynomial 22 + 422 + 1 is absolutely irreducible, so R(t) is relatively algebraically closed in
R(t,b,Db) = K (see [13, Theorem 10]). Hence, KP = R(t). Now, take (x) to be the linear differential
equation

D?*y+y=0.
The same argument as in [12, §6] shows that if f is a nontrivial solution of this equation, then either

bf? + (Db)(Df)f —b(Df)?
f?+(Df)?

is a D-constant which is not in R(¢), or i € K (f);; (where 2 = —1). In both cases we obtain a D-constant
of K (f)y that is not in K. Thus, there are no PPV extensions of K for this equation.

It has been known for quite some time that to get a general existence result, one needs to impose additional
assumptions on K. In [2], Cassidy and Singer showed that if (K?, A) is A-closed, then the existence of
a PPV extension of K is guaranteed. This was later improved in [3] by Gillet et al. where they show that
the assumption can be weaken to (K7, A) being existentially closed in (K, A); that is, every A-algebraic
variety over KP with a K-point has also a KP-point. Examples of the latter occur for instance when K
is formally real and (K?,A) is a real closed ordered differential field; more precisely, (KT, A) is a model
of RCF U UC,,—, (the theory of real closed ordered differential fields with m — r commuting derivations)
introduced by Tressl in [15, §8] (in the case m —r = 1 this theory was introduced by Singer [14]). A similar
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