

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Indivisibility of class numbers of real quadratic function fields

Jungvun Lee a,**,1,3, Yoonjin Lee b,*,2,3

ARTICLE INFO

Article history: Received 15 September 2014 Received in revised form 26 January

Available online 23 February 2016 Communicated by I.M. Duursma

MSC:

11R29; 11R58

ABSTRACT

In this paper we work on indivisibility of the class numbers of real quadratic function fields. We find an explicit expression for a lower bound of the density of real quadratic function fields (with constant field \mathbb{F}) whose class numbers are not divisible by a given prime ℓ . We point out that the explicit lower bound of such a density we found only depends on the prime ℓ , the degrees of the discriminants of real quadratic function fields, and the condition: either $|\mathbb{F}| \equiv 1 \pmod{\ell}$ or not.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There have been active developments on divisibility or indivisibility of class numbers of quadratic fields, for instance [4,6,8-11,13-17]. Specially, in [4,16], indivisibility of class numbers of real quadratic number fields has been studied with a connection with Greenberg conjecture. Existence of real quadratic fields whose class numbers are not divisible by a given prime p is closely related to the existence of real quadratic fields whose cyclotomic \mathbb{Z}_p -extensions have the *Iwasawa* λ -invariant zero (which is Greenberg Conjecture). It is thus important to study the existence of real quadratic fields whose class numbers are not divisible by p. In [4], Byeon finds an infinite set S of real quadratic fields whose class numbers are not divisible by a given prime p; however, this set S has no positive density. According to Cohen-Lenstra heuristics, it is conjectured that the density of real quadratic fields whose class numbers are not divisible by a given prime p is positive; but, it is not proved yet.

^a Institute of Mathematical Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu,

Seoul, 120-750, South Korea

Department of Mathematics, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea

 $[\]ast$ Corresponding author.

^{**} Principal corresponding author.

E-mail addresses: lee9311@ewha.ac.kr (J. Lee), yoonjinl@ewha.ac.kr (Y. Lee).

¹ The first named author was also supported by the National Research Foundation of Korea (NRF) grant founded by the Korea government (2011-0023688).

² The second named author by the National Research Foundation of Korea (NRF) grant founded by the Korea government (MEST) (2014-002731).

³ The authors were supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827).

On the other hand, for quadratic function fields, there are recent works [1,3,7] on the distribution of class groups of imaginary quadratic function fields in terms of ℓ -torsion subgroups for a given prime ℓ . In particular, [3] settles the Cohen–Lenstra heuristics (or the Friedman–Washington conjecture) for imaginary function fields, and they use equidistribution results due to Katz–Sarnak [12].

In this paper we work on indivisibility of the class numbers of real quadratic function fields. We find an explicit expression for a lower bound of the density of real quadratic function fields whose class numbers are not divisible by a given prime ℓ .

Notation

- F: finite field
- $\mathcal{H}_n(\mathbb{F})$: the space of all monic separable polynomials of degree n in $\mathbb{F}[x]$
- $Cl_f(\mathbb{F})$: a class group of a function field $\mathbb{F}[x,y]/(y^2=f(x))$ for $f\in\mathbb{F}[x]$.

We state the main result of this paper as follows.

Theorem 1.1. For a family of finite fields with $|\mathbb{F}| \equiv r \pmod{\ell}$, we have the following:

$$\frac{\left|\{f(x) \in \mathcal{H}_{2g+2}(\mathbb{F}) : Cl_f(\mathbb{F})[\ell] \cong 1\}\right|}{\left|\mathcal{H}_{2g+2}(\mathbb{F})\right|}
> \begin{cases}
1 + \sum_{j=1}^{g} \prod_{i=1}^{j} \frac{1}{1-\ell^i} - \frac{2(2g+1)!\ell^{g^2}(\ell-1)\prod_{j=1}^{g}(\ell^{2j}-1)}{\sqrt{|\mathbb{F}|}} & \text{if } r \not\equiv 1 \pmod{\ell}, \\
1 + \sum_{j=1}^{g} \prod_{i=1}^{j} \frac{\ell}{1-\ell^{2i}} - \frac{2(2g+1)!\ell^{g^2}(\ell-1)\prod_{j=1}^{g}(\ell^{2j}-1)}{\sqrt{|\mathbb{F}|}} & \text{if } r \equiv 1 \pmod{\ell}.
\end{cases}$$

We therefore obtain the asymptotic lower bound as follows:

$$\lim_{\|\mathbb{F}\|\equiv r\pmod{\ell},\ \|\mathbb{F}\|\to\infty}\frac{|\{f(x)\in\mathcal{H}_{2g+2}(\mathbb{F}):\ Cl_f(\mathbb{F})[\ell]\cong 1\}|}{|\mathcal{H}_{2g+2}(\mathbb{F})|}>\frac{\ell-2}{\ell-1}.$$

That is, the proportion of real quadratic function fields whose class number are not divisible by ℓ is greater than $\frac{\ell-2}{\ell-1}$.

We point out that the explicit lower bound of such a density we found only depends on the prime ℓ , the degrees of the discriminants of real quadratic function fields, and the condition: either $r \equiv 1 \pmod{l}$ or not. (It is independent of the value r as long as either $r \equiv 1 \pmod{l}$ or not.)

2. Preliminaries

We introduce some notation which will be used throughout this paper. We use similar notation to that of [1,3].

Notation

- C_f : hyperelliptic curve given by $y^2 = f(x)$ for $f \in \mathbb{F}[x]$
- $Jac(\mathcal{C}_f)(\mathbb{F})$: Jacobian of C_f over \mathbb{F}
- $Jac(\mathcal{C}_f)(\mathbb{F})[\ell]$: \mathbb{F} rational ℓ -torsion subgroup of $Jac(\mathcal{C}_f)$
- $GSp_{2g}(\mathbb{Z}/\ell) = \{A \in GL(V) \mid \exists m(A) \in (\mathbb{Z}/\ell)^{\times} : \forall v, w \in V, \langle Av, Aw \rangle = m(A)\langle v, w \rangle \}$, where V is a free \mathbb{Z}/ℓ -module of rank 2g, for an odd integer ℓ , a natural integer g

Download English Version:

https://daneshyari.com/en/article/4595842

Download Persian Version:

https://daneshyari.com/article/4595842

<u>Daneshyari.com</u>