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Let V (G) be the set of vertices of a simple connected graph G. The set L1(G)
consisting of ∅, V (G), and all neighborhoods N(v) of vertices v ∈ V (G) is a subposet 
of the complete lattice L(G) (under inclusion) of all intersections of elements in 
L1(G). In this paper, it is shown that L1(G) is a join-semilattice and L(G) is a 
Boolean algebra if and only if G is realizable as the zero-divisor graph of a meet-
semilattice with 0. Also, if L1(G) is a meet-semilattice and L(G) is a Boolean 
algebra, then G is realizable as the zero-divisor graph of a join-semilattice with 0. 
As a corollary, graphs that are realizable as zero-divisor graphs of commutative 
semigroups with 0 that do not have any nonzero nilpotent elements are classified.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given a (multiplicative) commutative semigroup S with 0, the zero-divisor graph Γ(S) of S is the (undi-
rected) graph whose vertices are the nonzero zero-divisors of S such that two distinct vertices x and y are 
adjacent (via a single edge) if and only if xy = 0. The concept of a zero-divisor graph was introduced by 
I. Beck in [6]. In Beck’s zero-divisor graph, the vertices were the elements of a commutative ring, and his 
study was focused on colorings. Of course, the zero-divisor relations involving 0 or any nonzero-divisor are 
fully understood. Therefore, when zero-divisor graphs are studied in order to illuminate algebraic structure, 
it is customary to restrict the set of vertices to only include the nonzero zero-divisors of S. This approach 
was first taken by D.F. Anderson and P.S. Livingston in [5] while studying commutative rings, and was 
extended to commutative semigroups with 0 by F.R. DeMeyer, T. McKenzie, and K. Schneider in [11]. 
Surveys on zero-divisor graphs are provided in [2] and [8].

Recently, the zero-divisor graph concept has been extended to posets (that is, to partially ordered sets; see 
[12,14,17,19]). Let P be a poset with a least element 0. Given a subset ∅ �= A ⊆ P, define A∧ = {x ∈ P | x ≤ a

for every a ∈ A}. The zero-divisor graph of P, denoted by Γ(P), is the (undirected) graph whose vertices 
are the nonzero elements of Z(P) =

{
x ∈ P | {x, y}∧ = {0} for some 0 �= y ∈ P

}
such that two vertices 
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x and y are adjacent (via a single edge) if and only if {x, y}∧ = {0} (equivalently, the infimum x ∧ y of 
{x, y} exists in P and is 0).

Although zero-divisor graphs of certain posets have been considered earlier (e.g., zero-divisor graphs of 
Boolean algebras were considered in [4]), zero-divisor graphs of general posets were first studied by R. Halaš 
and M. Jukl in [14]. As with Beck’s paper, they allowed every element of P to be a vertex, and they were 
mainly interested in colorings. The present definition was used by D. Lu and T. Wu in [19]. Zero-divisor 
graphs of posets were extended to quasiordered sets (i.e., sets endowed with a relation that is reflexive and 
transitive) by R. Halaš and H. Länger in [15], and the case when P is a lattice was later studied by E. Estaji 
and K. Khashyarmanesh in [12].

The present paper focuses on semilattices with a least element 0. Sections 2 and 3 extend the Intro-
duction by providing brief expositions on the essential topics that will be further developed in this article. 
Sections 4, 5, and 6 continue the investigations from [17] and [19].

By imposing additional conditions to a characterization of zero-divisor graphs of posets given in [19], the 
zero-divisor graphs of meet-semilattices are completely determined, and sufficient conditions are provided to 
determine whether a graph is realizable as the zero-divisor graph of a join-semilattice (Theorems 4.4 and 5.1). 
As a corollary, zero-divisor graphs of commutative semigroups without nonzero nilpotent elements are 
classified (Corollary 1.2). Along the way, a graph-theoretic analogue of the usual ring-theoretic annihilator
is developed, and is used to organize graph-theoretic criteria in an algebraic form (e.g., see Section 3).

The set of vertices of a graph G will be denoted by V (G). Two simple graphs G1 and G2 are called 
isomorphic, written G1 ∼= G2, if there exists a bijection ϕ : V (G1) → V (G2) such that two vertices x and y
are adjacent in G1 if and only if ϕ(x) and ϕ(y) are adjacent in G2.

Let G be a simple graph. If v ∈ V (G), then let cG(v) = {w ∈ V (G) | w is adjacent to v}. Given any 
A ⊆ V (G), define cG(A) = V (G) if A = ∅, and otherwise let cG(A) = ∩{cG(v) | v ∈ A}. When there is no 
risk of confusion, the set cG(A) will be denoted by c(A). (The choice in notation follows from the fact that 
“c” is a complementation on the lattice L(G) = {c(A) | A ⊆ V (G)} under inclusion; see Section 3.)

The neighborhood in G of a set ∅ �= A ⊆ V (G) is the set NG(A) = ∪{cG(v) | v ∈ A}. When A =
{a1, . . . , an} is a finite set, then we will write NG(A) = NG(a1, . . . , an). Of course, NG(a) = cG(a) for any 
vertex a of G. For consistency, we will always write cG(a) instead of NG(a). Also, when there is no risk of 
confusion, the set NG(A) will be denoted by N(A).

Let L1(G) = {c(a) | a ∈ V (G)} ∪ {∅, V (G)} ⊆ L(G). The following corollary is proved in Section 5.

Corollary 1.1. Let G be a simple connected graph with 2 ≤ |V (G)| < ∞. Then the following statements are 
equivalent.

(1) L1(G) is a lattice, and L(G) is a Boolean algebra.
(2) L1(G) is a meet-semilattice, and L(G) is a Boolean algebra.
(3) L1(G) is a join-semilattice, and L(G) is a Boolean algebra.
(4) G ∼= Γ(S) for some lattice S.
(5) G ∼= Γ(S) for some meet-semilattice S.
(6) G ∼= Γ(S) for some join-semilattice S.

The next corollary summarizes several of the main results of this paper, and is proved in Section 6.

Corollary 1.2. Let G be a simple connected graph with |V (G)| ≥ 2. Then the following statements are 
equivalent.

(1) G ∼= Γ(S) for some reduced commutative semigroup S.
(2) G ∼= Γ(S) for some commutative Boolean semigroup S.
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