Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

The primitive element theorem for differential fields with zero derivation on the ground field

Gleb A. Pogudin

Department of Higher Algebra, Faculty of Mechanics and Mathematics, Moscow State University, Leninskie Gory 1, GSP-1, Moscow, 119991, Russia

A R T I C L E I N F O A B S T R A C T

Article history: Received 14 September 2014 Received in revised form 16 January 2015 Available online 18 February 2015 Communicated by C.A. Weibel

MSC: 12H05; 13N15

In this paper we strengthen Kolchin's theorem [\[1\]](#page--1-0) in the ordinary case. It states that if a differential field E is finitely generated over a differential subfield $F \subset E$, trdeg_{*F*} $E < \infty$, and *F* contains a nonconstant, i.e., an element *f* such that $f' \neq 0$, then there exists $a \in E$ such that *E* is generated by *a* and *F*. We replace the last condition with the existence of a nonconstant element in *E*.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All fields considered in this paper are of characteristic zero. Let us briefly recall some basic notions of differential algebra. Let *R* be a ring. A map $D: R \to R$ satisfying $D(a + b) = D(a) + D(b)$ and $D(ab) =$ $aD(b)+D(a)b$ for all $a, b \in R$ is called *derivation*. We will denote $D(x)$ by x' and $Dⁿ(x)$ by $x^{(n)}$. A *differential ring R* is a ring with a specified derivation. A differential ring which is a field will be called a *differential field*. Let *F* ⊂ *E* be a differential field extension and $a \in E$. Let us denote by $F\langle a \rangle$ the differential subfield of *E* generated by *F* and *a*. If $F(a) = E$, then element *a* is said to be *primitive*. An element $a \in R$ of the differential ring *R* is said to be *constant* if $a' = 0$.

Kolchin proved [\[1\]](#page--1-0) a differential analogue of the primitive element theorem:

Theorem. (See [\[1\],](#page--1-0) p. 728, case $m = 1$.) Let $E = F\langle a_1, \ldots, a_n \rangle$ and triding $E < \infty$. Assume also that F *contains a nonconstant element. Then, there exists* $b \in E$ *such that* $E = F(b)$.

Remark 1. In [\[1\]](#page--1-0) Kolchin considered a more general case, i.e., fields equipped with a set of *m* commuting derivations. He required the existence of *m* elements in *F* whose Jacobian is nonzero. In this paper we restrict ourselves to the ordinary case.

E-mail address: pogudin.gleb@gmail.com.

The following is an easy consequence of the above theorem.

Corollary. Let $E = F(a_1, \ldots, a_n)$ and trdeg_F $E < \infty$. Assume also that E contains a nonconstant element. *Then, there exist* $b, c \in E$ *such that* $E = F(b, c)$ *.*

The last condition of the above theorem cannot be omitted. Indeed, let us consider the field $E = \mathbb{Q}(x, y)$ equipped with zero derivation. Clearly, the extension $F = \mathbb{Q} \subset E$ has no primitive element.

Kolchin's theorem was extended to positive characteristic by Seidenberg in [\[2\].](#page--1-0) Finally, both cases of zero and positive characteristic were summarized by Kolchin in his book [\[3\]](#page--1-0) in terms of differential separability [\[3,](#page--1-0) [Chap. 2,](#page--1-0) Prop. 9. In [\[4\]](#page--1-0) Babakhanian constructed primitive elements for several specific extensions $F \subset E$, namely when *E* is logarithmic differential field.

The goal of the present paper is to prove the primitive element theorem for the case when *E* contains a nonconstant element and $f' = 0$ for all $f \in F$. Results of this kind seem to be applicable, for example, to the study of computable differential fields and constrained extensions (see [5, Th. [4.7\]](#page--1-0) and [5, [Th. 8.6\]\)](#page--1-0).

2. Main results

Throughout the rest of the paper *F* denotes a field equipped with the trivial derivation.

Theorem 1. Let $E = F(a, b)$, $trdeg_F E < \infty$, and $b' \neq 0$. Then, there exists $p(x) \in \mathbb{Q}[x]$ such that $\operatorname{trdeg}_{F} F\langle a+p(b)\rangle = \operatorname{trdeg}_{F} F\langle a,b\rangle.$

Theorem 2. Let $E = F\langle a_1, \ldots, a_m \rangle$, trdeg_F $E < \infty$, and E contains a nonconstant. Then, there exists $a \in E$ *such that* $E = F\langle a \rangle$.

Remark 2. Unlike Kolchin's proof it is not sufficient to consider elements of the form $a + \lambda b$ ($\lambda \in F$). For example, let $\mathbb{Q}(x, y)$ be a differential field with the derivation defined by $x' = 1$ and $y' = 0$. There is no primitive element of the form $y + \lambda x$ ($\lambda \in \mathbb{Q}$), but $\mathbb{Q}(x, y) = \mathbb{Q}\langle x^2 + y \rangle$.

Proof of Theorem 1. We will need the following well-known lemmas:

Lemma 1. If $\text{trdeg}_F F\langle a \rangle = n$, then $F\langle a \rangle = F\left(a, a', \ldots, a^{(n)}\right)$.

Proof. Let *m* be the minimal integer such that $a, \ldots, a^{(m)}$ are algebraically dependent over *F*. Let $R(x_1, \ldots, x_m)$ be a polynomial over *F* of minimal degree in x_m such that $R(a, \ldots, a^{(m)}) = 0$. Hence

$$
0 = \left(R(a, \dots, a^{(m)})\right)' = \sum_{i=0}^{m} a^{(i+1)} \frac{\partial}{\partial x_i} R(a, \dots, a^{(m)})
$$

Thus, $a^{(m+1)} \in F(a, ..., a^{(m)})$.

Similarly we obtain that $a^{(N)} \in F(a, \ldots, a^{(m)})$ for all $N > m$. Hence, $n = m$ and $F(a) =$ $F(a, \ldots, a^{(n)})$. \Box

Lemma 2. (See [6, [p. 35\].](#page--1-0)) Let $q(x, x', \ldots, x^{(n)})$ be a nonzero differential polynomial over a differential *field* E *. Let* $f \in E$ *be a nonconstant element. Then, there exists* $p(t) \in \mathbb{Q}[t]$ *such that*

$$
q(x, x', \dots, x^{(n)})\Big|_{x=p(f)} \neq 0
$$

Download English Version:

<https://daneshyari.com/en/article/4595921>

Download Persian Version:

<https://daneshyari.com/article/4595921>

[Daneshyari.com](https://daneshyari.com/)