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In this paper we strengthen Kolchin’s theorem [1] in the ordinary case. It states 
that if a differential field E is finitely generated over a differential subfield F ⊂ E, 
trdegF E < ∞, and F contains a nonconstant, i.e., an element f such that f ′ �= 0, 
then there exists a ∈ E such that E is generated by a and F . We replace the last 
condition with the existence of a nonconstant element in E.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All fields considered in this paper are of characteristic zero. Let us briefly recall some basic notions of 
differential algebra. Let R be a ring. A map D: R → R satisfying D(a + b) = D(a) + D(b) and D(ab) =
aD(b) +D(a)b for all a, b ∈ R is called derivation. We will denote D(x) by x′ and Dn(x) by x(n). A differential 
ring R is a ring with a specified derivation. A differential ring which is a field will be called a differential 
field. Let F ⊂ E be a differential field extension and a ∈ E. Let us denote by F 〈a〉 the differential subfield 
of E generated by F and a. If F 〈a〉 = E, then element a is said to be primitive. An element a ∈ R of the 
differential ring R is said to be constant if a′ = 0.

Kolchin proved [1] a differential analogue of the primitive element theorem:

Theorem. (See [1], p. 728, case m = 1.) Let E = F 〈a1, . . . , an〉 and trdegF E < ∞. Assume also that F
contains a nonconstant element. Then, there exists b ∈ E such that E = F 〈b〉.

Remark 1. In [1] Kolchin considered a more general case, i.e., fields equipped with a set of m commuting 
derivations. He required the existence of m elements in F whose Jacobian is nonzero. In this paper we 
restrict ourselves to the ordinary case.
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The following is an easy consequence of the above theorem.

Corollary. Let E = F 〈a1, . . . , an〉 and trdegF E < ∞. Assume also that E contains a nonconstant element. 
Then, there exist b, c ∈ E such that E = F 〈b, c〉.

The last condition of the above theorem cannot be omitted. Indeed, let us consider the field E = Q(x, y)
equipped with zero derivation. Clearly, the extension F = Q ⊂ E has no primitive element.

Kolchin’s theorem was extended to positive characteristic by Seidenberg in [2]. Finally, both cases of zero 
and positive characteristic were summarized by Kolchin in his book [3] in terms of differential separability [3, 
Chap. 2, Prop. 9]. In [4] Babakhanian constructed primitive elements for several specific extensions F ⊂ E, 
namely when E is logarithmic differential field.

The goal of the present paper is to prove the primitive element theorem for the case when E contains a 
nonconstant element and f ′ = 0 for all f ∈ F . Results of this kind seem to be applicable, for example, to 
the study of computable differential fields and constrained extensions (see [5, Th. 4.7] and [5, Th. 8.6]).

2. Main results

Throughout the rest of the paper F denotes a field equipped with the trivial derivation.

Theorem 1. Let E = F 〈a, b〉, trdegF E < ∞, and b′ �= 0. Then, there exists p(x) ∈ Q[x] such that 
trdegF F 〈a + p(b)〉 = trdegF F 〈a, b〉.

Theorem 2. Let E = F 〈a1, . . . , am〉, trdegF E < ∞, and E contains a nonconstant. Then, there exists a ∈ E

such that E = F 〈a〉.

Remark 2. Unlike Kolchin’s proof it is not sufficient to consider elements of the form a + λb (λ ∈ F ). For 
example, let Q(x, y) be a differential field with the derivation defined by x′ = 1 and y′ = 0. There is no 
primitive element of the form y + λx (λ ∈ Q), but Q(x, y) = Q〈x2 + y〉.

Proof of Theorem 1. We will need the following well-known lemmas:

Lemma 1. If trdegF F 〈a〉 = n, then F 〈a〉 = F
(
a, a′, . . . , a(n)).

Proof. Let m be the minimal integer such that a, . . . , a(m) are algebraically dependent over F . Let 
R(x1, . . . , xm) be a polynomial over F of minimal degree in xm such that R(a, . . . , a(m)) = 0. Hence

0 =
(
R(a, . . . , a(m))

)′
=

m∑
i=0

a(i+1) ∂

∂xi
R(a, . . . , a(m))

Thus, a(m+1) ∈ F (a, . . . , a(m)).
Similarly we obtain that a(N) ∈ F (a, . . . , a(m)) for all N > m. Hence, n = m and F 〈a〉 =

F
(
a, . . . , a(n)). �

Lemma 2. (See [6, p. 35].) Let q(x, x′, . . . , x(n)) be a nonzero differential polynomial over a differential 
field E. Let f ∈ E be a nonconstant element. Then, there exists p(t) ∈ Q[t] such that

q(x, x′, . . . , x(n))
∣∣∣
x=p(f)

�= 0
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