Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Relative singularity categories

Huanhuan Li, Zhaoyong Huang*

Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, PR China

ARTICLE INFO

Article history: Received 1 May 2014 Received in revised form 19 December 2014 Available online 11 February 2015 Communicated by S. Koenig

MSC: 18E30; 16E35; 18G25

ABSTRACT

We study the properties of the relative derived category $D^b_{\mathscr{C}}(\mathscr{A})$ of an abelian category \mathscr{A} relative to a full and additive subcategory \mathscr{C} . In particular, when $\mathscr{A} = A$ -mod for a finite-dimensional algebra A over a field and \mathscr{C} is a contravariantly finite subcategory of A-mod which is admissible and closed under direct summands, the \mathscr{C} -singularity category $D_{\mathscr{C}-sg}(\mathscr{A}) = D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$ is studied. We give a sufficient condition when this category is triangulated equivalent to the stable category of the Gorenstein category $\mathscr{G}(\mathscr{C})$ of \mathscr{C} .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a finite-dimensional algebra over a field. We denote by A-mod the category of finitely generated left A-modules, and A-proj (resp. A-inj) the full subcategory of A-mod consisting of projective (resp. injective) modules. We use $K^b(A)$ and $D^b(A)$ to denote the bounded homotopy and derived categories of A-mod respectively, and $K^b(A-\text{proj})$ (resp. $K^b(A-\text{inj})$) to denote the bounded homotopy category of A-proj (resp. A-inj).

The composition functor $K^b(A\text{-proj}) \to K^b(A) \to D^b(A)$ with the former one the inclusion functor and the latter one the quotient functor is naturally a fully faithful triangle functor, and then one can view $K^b(A\text{-proj})$ as a triangulated subcategory of $D^b(A)$. In fact it is a thick one by [7, Lemma 1.2.1]. Consider the quotient triangulated category $D_{sg}(A) := D^b(A)/K^b(A\text{-proj})$, which is the so-called "singularity category". This category was first introduced and studied by Buchweitz in [7] where A is assumed to be a left and right noetherian ring. Later on Rickard proved in [26] that for a self-injective algebra A, this category is triangle-equivalent to the stable category of A-mod. This result was generalized to Gorenstein algebra by Happel in [19]. Since A has finite global dimension if and only if $D_{sg}(A) = 0$, from this viewpoint $D_{sg}(A)$ measures the homological singularity of the algebra A, we call it the singularity category after [24].

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jpaa.2015.02.009} 0022-4049/© 2015$ Elsevier B.V. All rights reserved.

E-mail addresses: lihuanhuan0416@163.com (H. Li), huangzy@nju.edu.cn (Z. Huang).

4091

Besides, other quotient triangulated categories have been studied by many authors. Beligiannis considered the quotient triangulated categories $D^b(R\operatorname{-Mod})/K^b(R\operatorname{-Proj})$ and $D^b(R\operatorname{-Mod})/K^b(R\operatorname{-Inj})$ for arbitrary ring R, where $R\operatorname{-Mod}$ is the category of left $R\operatorname{-modules}$ and $R\operatorname{-Proj}$ (resp. $R\operatorname{-Inj}$) is the full subcategory of $R\operatorname{-Mod}$ consisting of projective (resp. injective) modules (see [5]). Let \mathscr{A} be an abelian category. A full and additive subcategory ω of \mathscr{A} is called *self-orthogonal* if $\operatorname{Ext}^i_{\mathscr{A}}(M,N) = 0$ for any $M, N \in \omega$ and $i \geq 1$; in particular, an object T in \mathscr{A} is called *self-orthogonal* if $\operatorname{Ext}^i_{\mathscr{A}}(M, N) = 0$ for any $i \geq 1$. Chen and Zhang studied in [11] the quotient triangulated category $D^b(A)/K^b(\operatorname{add}_A T)$ for a finite-dimensional algebra Aand a self-orthogonal module T in $A\operatorname{-mod}$, where $\operatorname{add}_A T$ is the full subcategory of $A\operatorname{-mod}$ consisting of direct summands of finite direct sums of T. Recently Chen studied in [10] the relative singularity category $D_{\omega}(\mathscr{A}) := D^b(\mathscr{A})/K^b(\omega)$ for an arbitrary abelian category \mathscr{A} and an arbitrary self-orthogonal, full and additive subcategory ω of \mathscr{A} .

For an abelian category \mathscr{A} with enough projective objects, the Gorenstein derived category $D_{gp}^*(\mathscr{A})$ of \mathscr{A} was introduced by Gao and Zhang in [16], where $* \in \{\text{blank}, -, b\}$. It can be viewed as a generalization of the usual derived category $D^*(\mathscr{A})$ by using Gorenstein projective objects instead of projective objects and \mathscr{GP} -quasi-isomorphisms instead of quasi-isomorphisms, where \mathscr{GP} means "Gorenstein projective". For Gorenstein projective modules and Gorenstein projective objects, we refer to [2,13,14,20,27]. Asadollahi, Hafezi and Vahed studied in [1] the relative derived category $D^*_{\mathscr{C}}(\mathscr{A})$ for an arbitrary abelian category \mathscr{A} with respect to a contravariantly finite subcategory \mathscr{C} , where $* \in \{\text{blank}, -, b\}$, and they pointed out that $K^b(\mathscr{C})$ can be viewed as a triangulated subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$.

Given a finite-dimensional algebra A over a field and a full and additive subcategory \mathscr{C} of $\mathscr{A}(=A\text{-mod})$ closed under direct summands, it follows from [6] that $K^b(\mathscr{C})$ is a Krull–Schmidt category and hence can be viewed as a thick triangulated subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$. If the quotient triangulated category $D_{\mathscr{C}\text{-sg}}(\mathscr{A}) :=$ $D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$ is considered, then it is natural to ask whether $D_{\mathscr{C}\text{-sg}}(\mathscr{A})$ shares some nice properties of $D_{sg}(A)$. The aim of this paper is to study this question.

In Section 2, we give some terminology and some preliminary results.

In Section 3, for an abelian category \mathscr{A} and a full and additive subcategory \mathscr{C} of \mathscr{A} , we prove that if \mathscr{C} is admissible, then the composition functor $\mathscr{A} \to K^b(\mathscr{A}) \to D^b_{\mathscr{C}}(\mathscr{A})$ is fully faithful, where the former functor is the inclusion functor and the latter one is the quotient functor. Let \mathscr{C} be a contravariantly finite subcategory of \mathscr{A} and $\mathscr{D} \subseteq \mathscr{A}$ a subclass of \mathscr{A} . We introduce a dimension denoted by $\mathscr{C}\mathscr{D}$ -dim M which is called the \mathscr{C} -proper \mathscr{D} -dimension of an object M in \mathscr{A} . By choosing a left \mathscr{C} -resolution C^{\bullet}_{M} of M, we get a functor $\operatorname{Ext}^{n}_{\mathscr{C}}(M, -) := H^{n} \operatorname{Hom}_{\mathscr{A}}(C^{\bullet}_{M}, -)$ for any $n \in \mathbb{Z}$. Then by using the properties of this functor we obtain some equivalent characterizations for $\mathscr{C}\mathscr{C}$ -dim M being finite.

In Section 4, we introduce the \mathscr{C} -singularity category $D_{\mathscr{C}-sg}(\mathscr{A}) := D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$, where $\mathscr{A} = A$ -mod and \mathscr{C} is a contravariantly finite, full and additive subcategory of \mathscr{A} which is admissible and closed under direct summands. We prove that if $\mathscr{C}\mathscr{C}$ -dim $\mathscr{A} < \infty$, then $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$. As a consequence, we get that if A is of finite representation type, then $\mathscr{C}\mathscr{C}$ -dim $\mathscr{A} < \infty$ if and only if $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$. Let $\mathscr{G}(\mathscr{C})$ be the Gorenstein category of \mathscr{C} and ε the collection of all $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complexes of the form: $0 \to L \to M \to N \to 0$ with $L, M, N \in \mathscr{G}(\mathscr{C})$. By [8] (or [25]) $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is an exact category; moreover, it is a Frobenius category with \mathscr{C} the subcategory of projective-injective objects, see [18]. We prove that if $\mathscr{C}\mathscr{G}(\mathscr{C})$ -dim $\mathscr{A} < \infty$, then the natural functor $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}-sg}(\mathscr{A})$ induces a triangle-equivalence $\theta' : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}-sg}(\mathscr{A})$, where $\mathscr{G}(\mathscr{C})$ is the stable category of $\mathscr{G}(\mathscr{C})$.

2. Preliminaries

Throughout this paper, \mathscr{A} is an abelian category, $C(\mathscr{A})$ is the category of complexes of objects in \mathscr{A} , $K^*(\mathscr{A})$ is the homotopy category of \mathscr{A} and $D^*(\mathscr{A})$ is the usual derived category by inverting the quasi-isomorphisms in $K^*(\mathscr{A})$, where $* \in \{\text{blank}, -, b\}$. We will use the formula $\text{Hom}_{K(\mathscr{A})}(X^{\bullet}, Y^{\bullet}[n]) = H^n \text{Hom}_{\mathscr{A}}(X^{\bullet}, Y^{\bullet})$ for any $X^{\bullet}, Y^{\bullet} \in C(\mathscr{A})$ and $n \in \mathbb{Z}$ (the ring of integers).

Download English Version:

https://daneshyari.com/en/article/4595925

Download Persian Version:

https://daneshyari.com/article/4595925

Daneshyari.com