Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Reduced torsion pairs

Otto Kerner

Mathematisches Institut, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany

ARTICLE INFO

Article history: Received 9 July 2014 Received in revised form 3 July 2015 Available online 6 August 2015 Communicated by S. Koenig

Dedicated to Ibrahim Assem

 $\begin{array}{l} MSC:\\ 16G20;\ 16G60;\ 16S90;\ 18E40 \end{array}$

ABSTRACT

Let H be a finite dimensional hereditary algebra of infinite representation type over an algebraically closed field. A torsion pair $(\mathcal{T}, \mathcal{F})$ in H-mod is called *reduced* if there are no indecomposable Ext-projective modules in \mathcal{T} as well as no nonzero Ext-injective modules in \mathcal{F} . An anti-chain of reduced torsion pairs of width card Kwill be constructed.

© 2015 Elsevier B.V. All rights reserved.

0. Introduction

Let $\mathcal{Q} = (\mathcal{Q}_0, \mathcal{Q}_1)$ be a finite connected quiver without oriented cycles. The set of vertices \mathcal{Q}_0 is labelled by $\{1, \ldots, n\}$. For an algebraically closed field K we consider the category $\operatorname{rep}_K \mathcal{Q}$ of finite dimensional K-linear representations of \mathcal{Q} . This is an abelian length category, and equivalent to the module category H-mod of finite dimensional modules over the path algebra $H = K\mathcal{Q}$. In the study of module categories or more generally e.g. of triangulated categories with t-structure, see [5, Chap. II], frequently and successfully torsion pairs are used:

If \mathcal{T} and \mathcal{F} are classes of modules in *H*-mod, the pair $(\mathcal{T}, \mathcal{F})$ is called a torsion pair, provided

(a) the torsion class \mathcal{T} as well as the torsion free class \mathcal{F} is closed under extensions. \mathcal{T} is closed under factors, \mathcal{F} is closed under subobjects.

(b) For $T \in \mathcal{T}$ and $F \in \mathcal{F}$ we have $\operatorname{Hom}_H(T, F) = 0$.

(c) For a module $M \in H$ -mod there exists a short exact sequence

$$0 \to tM \to M \to fM \to 0,$$

with $tM \in \mathcal{T}$ and $fM = M/tM \in \mathcal{F}$. This short exact sequence is unique, and it is called the *canonical* short exact sequence of M with respect to the torsion pair $(\mathcal{T}, \mathcal{F})$. The module tM is called the *torsion* submodule of M.

E-mail address: kerner@math.uni-duesseldorf.de.

If \mathcal{T} is a torsion class, i.e. closed under extensions and factors, then $(\mathcal{T}, \mathcal{F})$ with $\mathcal{F} = \{Y | \operatorname{Hom}(\mathcal{T}, Y) = 0\}$ is a torsion pair. Dually, if \mathcal{F} is a torsion free class, there exists a unique torsion class \mathcal{T} making $(\mathcal{T}, \mathcal{F})$ a torsion pair.

Given a torsion pair $(\mathcal{T}, \mathcal{F})$ in *H*-mod, a module $X \in \mathcal{T}$ $(Y \in \mathcal{F})$ is called Ext-*projective* in \mathcal{T} (Ext-*injective in* \mathcal{F}), if $\text{Ext}(X, \mathcal{T}) = 0$ (Ext $(\mathcal{F}, Y) = 0$, respectively). Clearly a projective module $P \in \mathcal{T}$ is Ext-projective (in \mathcal{T}). If $X \in \mathcal{T}$ is indecomposable and not projective then X is Ext-projective in \mathcal{T} if and only if $\tau_H X \in \mathcal{F}$ and is Ext-injective. Here τ_H denotes the Auslander–Reiten translation in *H*-mod.

If X is Ext-projective in \mathcal{T} with r pairwise nonisomorphic indecomposable direct summand, then X is a partial tilting module in H-mod. The class Gen(X) of modules generated by a partial tilting H-module X is the smallest torsion class in H-mod containing X as an Ext-projective module. The right perpendicular category X^{\perp} of a partial tilting module X, defined by the modules M with Hom(X, M) = 0 and Ext(X, M) = 0 is equivalent to C-mod, where C is a (not necessarily connected) hereditary algebra with n - r simple modules. To simplify notations we will identify these two equivalent categories.

It was shown in [1] that the attachment $(\mathcal{T}, \mathcal{F}) \mapsto (\mathcal{T} \cap X^{\perp}, \mathcal{F} \cap X^{\perp})$ defines a bijection between the torsion pairs $(\mathcal{T}, \mathcal{F})$ in *H*-mod, containing $X \in \mathcal{T}$ as an Ext-projective module, and all torsion pairs in *C*-mod. Clearly the torsion class $\mathcal{T} \cap X^{\perp}$ may contain nonzero Ext-projective modules, even if $X \in \mathcal{T}$ is chosen maximal. For a torsion pair $(\mathcal{T}', \mathcal{F}')$ in *C*-mod consider the class \mathcal{T} of *H*-modules *M*, which are the middle term of short exact sequences of the form $0 \to G \to M \to Y' \to 0$, where *G* is generated by *X* and $Y' \in \mathcal{T}'$. Then \mathcal{T} is a torsion class in *H*-mod, $X \in \mathcal{T}$ is Ext-projective object, by this construction one gets back the original torsion class \mathcal{T}_0 . If for example the algebra *C* is representation finite, then there are only finitely many torsion pairs in *C*-mod, hence there exist only finitely many torsion pairs in *H*-mod containing *X* as Ext-projective modules *Y* $\in \mathcal{F}$. Iterating these reductions, it stops after finitely many steps and one gets a "final" torsion pair ($\hat{\mathcal{T}}, \hat{\mathcal{F}}$) in $\hat{\mathcal{C}}$ -mod:

Either $\hat{C} = 0$, or $\hat{C} \neq 0$ but still hereditary, $\hat{\mathcal{T}}$ contains no indecomposable Ext-projective module and $\hat{\mathcal{F}}$ contains no nonzero Ext-injective module. Such a torsion pair is called a *reduced* torsion pair.

The set of torsion pairs in *H*-mod form a poset (even a lattice), if one defines $(\mathcal{T}_1, \mathcal{F}_1) \leq (\mathcal{T}_2, \mathcal{F}_2)$ if $\mathcal{T}_1 \subset \mathcal{T}_2$, see e.g. [1]. An anti-chain in a poset consists of incomparable elements.

The main result of the paper is

Theorem. Let H be a finite dimensional connected representation infinite hereditary algebra over an algebraically closed field K. Then there exists an anti-chain of reduced torsion pairs in H-mod of width card K.

In the last section we will relate reduced torsion pairs in H-mod to tilting and cotilting modules in H-Mod, the category of all H-modules.

For unexplained terminology and results we refer to the monographs [2,11,13], or to the survey [6].

1. Preliminaries

Since *H* is hereditary, the Auslander–Reiten translation $\tau = \tau_H$ is the left exact functor $\tau = D \operatorname{Ext}(-, H)$ where $D = \operatorname{Hom}_K(-, K)$ is the usual duality. The functor $\tau^- = \operatorname{Ext}(DH, -)$ is right exact. Since *H* is connected, the Auslander–Reiten quiver $\Gamma(H)$ of *H*-mod consists in the case when *H* is representation finite of exactly one component. In this case $\Gamma(H)$ is the preprojective and preinjective component, simultaneously.

If H is representation infinite and connected, the Auslander–Reiten quiver $\Gamma(H)$ contains exactly one infinite preprojective component \mathcal{P} , containing all indecomposable projective modules, exactly one infinite preinjective component \mathcal{I} , containing all indecomposable injective modules, and infinitely many regular components. If H is tame, all regular components are tubes; in the wild case, the regular components are Download English Version:

https://daneshyari.com/en/article/4595977

Download Persian Version:

https://daneshyari.com/article/4595977

Daneshyari.com