

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

Cyclic covering of the projective line with prime gonality

Nan Wangvu

Department of Mathematics, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-shi, 338-8570, Japan

ARTICLE INFO

Article history: Received 24 April 2014 Received in revised form 2 June 2014 Available online 9 July 2014 Communicated by A.V. Geramita

MSC: 14H51; 14H30 ABSTRACT

Let V be a cyclic covering of the complex projective line, g be the genus of V, Gon(V) be the gonality of V, and p be a prime number. In this note, we prove a necessary and sufficient condition for Gon(V) = p when $g > (p-1)^2$. We also give a necessary and sufficient condition without the bound of g for the case where p=3, and the similar result for the case where p=2 has been given in the previous notes [3] and [4].

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let V be a smooth connected complete curve over $\mathbb C$ which admits a structure of d-cyclic covering of the projective line $\mathbb P^1$ with n branch points. In this note, we denote the gonality of V by $\mathrm{Gon}(V)$. The condition for $\mathrm{Gon}(V)=1$ is trivial, and the condition for $\mathrm{Gon}(V)=2$ has been given in [3] and [4]. Thus, we may always assume that $\mathrm{Gon}(V)\geq 3$ in this note. In particular, we can let $d\geq 3$ and $n\geq 3$, so V has the following plane model:

$$V: \quad y^{d} = (x - \lambda_{1})^{a_{1}}(x - \lambda_{2})^{a_{2}} \cdots (x - \lambda_{n})^{a_{n}}, \quad a_{i} \not\equiv 0 \pmod{d},$$

$$d, n \ge 3, \quad \gcd(d, a_{1}, \dots, a_{n}) = 1, \quad a_{1} + \dots + a_{n} \equiv 0 \pmod{d},$$

$$(1.1)$$

where the branch points $\lambda_i \in \mathbb{P}^1$ are mutually distinct with each other. If ρ is a projective transformation of \mathbb{P}^1 , and $\lambda'_i = \rho(\lambda_i)$, then V is birational to the curve

$$y^{d} = (x - \lambda'_{1})^{a_{1}} (x - \lambda'_{2})^{a_{2}} \cdots (x - \lambda'_{n})^{a_{n}}.$$

If some λ_i , say λ_n , is just taken to the infinite point of \mathbb{P}^1 , then the equation of V should be written in the form

E-mail address: nanwang0824@gmail.com.

$$y^d = (x - \lambda_1)^{a_1} (x - \lambda_2)^{a_2} \cdots (x - \lambda_{n-1})^{a_{n-1}},$$

and in this case, the number a_n is recovered as

$$a_n = \min\{a' \ge 1 : a_1 + \dots + a_{n-1} + a' \equiv 0 \pmod{d}\}.$$

Definition 1. We call $(d; a_1, \ldots, a_n)$ the *type* of the curve V given in (1.1). For fixed d and n, two types $(d; a_1, \ldots, a_n)$ and $(d; a'_1, \ldots, a'_n)$ are said to be in the same *Nielsen class* if $(a'_1, \ldots, a'_n) \equiv (ka_{\tau(1)}, \ldots, ka_{\tau(n)})$ (mod d) for some permutation $\tau \in \mathcal{S}_n$ and some integer k relatively prime to d. In this case, we write

$$(a'_1,\ldots,a'_n) \equiv^k_{\tau} (a_1,\ldots,a_n) \pmod{d}.$$

Definition 2. We write $\mathbb{Z}_d^{\times} = \{k \in \mathbb{Z} : 1 \leq k \leq d-1, \gcd(d,k)=1\}$. Let V be the curve given in (1.1). For every $k \in \mathbb{Z}_d^{\times}$, there exists a permutation $\tau \in \mathcal{S}_n$ and integers $\{a_i'\}_{i=1}^n$ such that

$$(a'_1, \dots, a'_n) \equiv_{\tau}^k (a_1, \dots, a_n) \pmod{d}$$
 and $1 \le a'_1 \le \dots \le a'_n \le d - 1$.

Then let $n_k = (\sum_{i=1}^n a_i')/d$ and $r_k = \sum_{i=1}^{n-n_k} a_i'$, and we define

$$r_{\min}(d; a_1, \dots, a_n) = \min\{r_k : k \in \mathbb{Z}_k^{\times}\}.$$

Theorem 3. Let V be the curve given in (1.1), g be its genus, and p be an odd prime number. When $g > (p-1)^2$, we have Gon(V) = p if and only if one of the following conditions holds:

- (G1) d is divisible by p, and at least n-2 of the a_i 's are divisible by d/p;
- (G2) the condition (G1) does not hold, and $r_{\min}(d; a_1, \dots, a_n) = p$.

Corollary 4. When $g > (p-1)^2$, whether the gonality of curve V given in (1.1) equals the prime number p is determined by the Nielsen class of the type of V, and independent of the choice of the parameters λ_i 's.

Remark 5. The condition (G1) is quite easy to understand, and we consider the condition (G2). Let the integers d, n and p be fixed, and assume that $g > (p-1)^2$. Then we see that $r_{\min}(d; a_1, \ldots, a_n) = p$ if and only if there exists a permutation $\tau \in \mathcal{S}_n$, an integer $k \in \mathbb{Z}_d^{\times}$ and positive integers s, t, $u_1, \ldots, u_s, v_1, \ldots, v_t$ such that the following conditions hold:

- (1) s + t = n,
- (2) $p = u_1 + \dots + u_s = v_1 + \dots + v_t$,
- (3) $\max\{u_i\}_{i=1}^s + \max\{v_j\}_{j=1}^t \le d$,
- (4) $(d; a_1, \ldots, a_n) \equiv_{\pi}^k (d; u_1, \ldots, u_s, d v_1, \ldots, d v_t) \pmod{d}$.

Hence, we can easily compute and list all the Nielsen classes whose corresponding curves satisfy the condition (G2). (See the computation for p=3 in Section 3 as an example.) Furthermore, by Proposition 8 latter, the condition (G2) implies that the curve V can be birationally transformed to the following form:

$$V': \quad y^d = (x - \mu_1)^{u_1} \cdots (x - \mu_s)^{u_s} \cdot (x - \mu_{s+1})^{d - v_1} \cdots (x - \mu_n)^{d - v_t},$$

and the branch points μ_i 's can be taken away from the infinite point of \mathbb{P}^1 . In this case, we have $\deg(y/(x-\mu_{s+1})\cdots(x-\mu_n))=p$ on V'.

Download English Version:

https://daneshyari.com/en/article/4596003

Download Persian Version:

https://daneshyari.com/article/4596003

Daneshyari.com