Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On the singularities of effective loci of line bundles

Lei Song

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA

ARTICLE INFO

Article history: Received 12 June 2013 Received in revised form 11 August 2014 Available online 7 October 2014 Communicated by S. Kovács ABSTRACT

We prove that every irreducible component of semi-regular loci of effective line bundles in the Picard scheme of a smooth projective variety has at worst rational singularities. This generalizes Kempf's result on rational singularities of W_d^0 for smooth curves. We also work out an example of such loci for a ruled surface. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fix a ground field k, which is algebraically closed and of characteristic 0. Let X be a smooth projective curve of genus g. For $r, d \ge 0$, the Brill–Noether locus is defined as

$$supp(W_d^r(X)) = \{ L \in Pic(X) \mid h^0(L) \ge r+1, \deg(L) = d \}.$$

There has been extensive research on these loci in literature (cf. [1]). A special kind of Brill–Noether loci is $W_d^0(X)$, which is the image of the Abel–Jacobi map $\varphi : X_d \to \operatorname{Pic}^d X$, where X_d denotes the *d*th symmetric product of X and $\operatorname{Pic}^d X$ denotes the Picard variety of degree *d* line bundles on X. When d = g - 1, W_{g-1}^0 is a theta divisor if $\operatorname{Pic}^{g-1} X$ is identified with the Jacobian of the curve.

Kempf [7] proved that $W_d^0(X)$ has only rational singularities, so in particular it is Cohen–Macaulay and normal; and for $1 \le d \le g-1$, the tangent cone over a point $[L] \in W_d^0(X)$ admits a rational resolution from the normal bundle of the fiber $F = \varphi^{-1}([L])$. He also computed the degree of the tangent cone, generalizing Riemann's formula on multiplicity of theta divisors. A celebrated generalization of Kempf's theorem in the case d = g - 1 is due to Ein and Lazarsfeld [4, Theorem 1] stating that any principal polarization divisor $\Theta \subset A$ on an abelian variety is normal and has rational singularities.

This paper attempts to extend part of Kempf's results on W_d^0 for curves to higher dimensional varieties using the approach and technique of Ein [3], where the author studied the normal sheaf \mathcal{N} of the fiber F. He showed \mathcal{N} can be reconstructed from the multiplication map $H^0(\mathcal{O}_F(1)) \otimes H^1(\mathcal{N}(-1)) \to H^1(\mathcal{N})$, and

 $\label{eq:http://dx.doi.org/10.1016/j.jpaa.2014.09.032} 0022-4049/© 2014$ Elsevier B.V. All rights reserved.

E-mail address: lsong4@uic.edu.

proved that for a general curve $X, \mathcal{N} \simeq \rho \mathcal{O}_F \oplus (H^1(X, L) \otimes \Omega_F(1))$, where $\rho = g - (r+1)(g+r-d)$ is the Brill–Noether number. A large part of his results was built on a locally free resolution of \mathcal{N}^* .

Now let X be a smooth projective variety of arbitrary dimension. Let $\operatorname{Pic}(X)$ and $\operatorname{Div}(X)$ denote the Picard scheme and divisor scheme, which parameterize line bundles and effective divisors on X respectively. One still has the Abel–Jacobi map φ : $\operatorname{Div}(X) \to \operatorname{Pic}(X)$, where $\operatorname{Div}(X)$ plays the same role as X_d . However, as a closed subscheme of the Hilbert scheme $\operatorname{Hilb}(X)$, $\operatorname{Div}(X)$ may be very singular. Even for dim X = 2, an example due to Severi and Zappa in 1940s shows that $\operatorname{Div}(X)$ can be nonreduced. For this reason, we restrict ourselves to those so-called semi-regular line bundles (see Section 2 for definition), and consider the semi-regular locus $W^0_{\mathrm{sr}}(X)$ they form in $\operatorname{Pic}(X)$. We refer to [9] for background of $\operatorname{Pic}(X)$ and $\operatorname{Div}(X)$. Our main theorem is

Theorem 1.1. Let X be a smooth projective variety. Then any irreducible component of $W^0_{sr}(X)$ has only rational singularities.

When X is a curve, $W_{sr}^0 = \coprod_{d \ge 0} W_d^0$ and W_d^0 is irreducible, and so the theorem recovers Kempf's result that W_d^0 has rational singularities.

The paper is organized as follows: in Section 2, we study the conormal sheaf of fibers of the Abel–Jacobi map. We derive a resolution of the sheaf and obtain several interesting consequences. With a criterion of rational singularities based on Kovács's work, we prove our main theorem. In Section 3, one example of an irreducible component $W_{\rm sr}^0$ of a ruled surface is analyzed in detail. In Appendix A we prove an auxiliary result on varieties swept out by linear spans of divisors of linear systems on an embedded curve.

2. Rational singularities of $W^0_{sr}(X)$

2.1. Semi-regular line bundles and their loci

Let X be a smooth projective variety. It is well known that $\operatorname{Pic}(X)$ is separated and smooth over k. As $\operatorname{Hilb}(X)$ breaks into connected components according to Hilbert polynomials, so does $\operatorname{Pic}(X)$. Fix an ample line bundle $\mathcal{O}_X(1)$ on X. For each line bundle L on X, there exists a Q-coefficient polynomial P_L such that $P_L(n) = \chi(L(n))$ for $n \in \mathbb{Z}$. The P_L is constant over any connected component of $\operatorname{Pic}(X)$. The Abel–Jacobi map $\varphi : \operatorname{Div}(X) \to \operatorname{Pic}(X)$, which sends an effective divisor D to the associated line bundle $\mathcal{O}_X(D)$, is a projective morphism. For any line bundle L on X, canonically $\varphi^{-1}([L]) \simeq |L|$, where [L] is the corresponding point of L in $\operatorname{Pic}(X)$ (cf. [9]).

Definition 2.1. An effective Cartier divisor D on X is semi-regular if the boundary map

$$\partial: H^1(\mathcal{O}_D(D)) \to H^2(\mathcal{O}_X)$$

is injective. A line bundle L is semi-regular if L is effective, and D is semi-regular for all $D \in |L|$.

Remark 2.2. If X is a curve, then all effective divisors, line bundles are automatically semi-regular. The reader can check that a necessary condition for L to be semi-regular is that $h^1(L) \leq q$ (see Corollary 2.13), and sufficient conditions are either $h^1(L) = 0$ or $H^1(\mathcal{O}_D(D)) = 0$ for all $D \in |L|$. The second one is however rather strong. For instance, when X is a surface and $p_g = h^0(\omega_X) > 0$, $H^1(\mathcal{O}_D(D)) = 0$ implies that $\sup(D) \subset Bs(|\omega_X|)$.

Theorem 2.3 (Severi–Kodaira–Spencer). Assume char(k) = 0. Div(X) is smooth at [D] of the expected dimension

Download English Version:

https://daneshyari.com/en/article/4596036

Download Persian Version:

https://daneshyari.com/article/4596036

Daneshyari.com