Duality and noncommutative planes

Søren Jøndrup

Matematisk Institutt, Københavns Universitet, Universitetsparken 5, DK-2100 København, Denmark

A R T I C L E I N F O

Article history:
Available online 27 May 2014
To Hans Bjørn
MSC:
14A22; 14H50; 14R; 16D60; 16G30

Abstract

We study extensions of simple modules over an associative ring A and we prove that for twosided ideals \mathfrak{m} and \mathfrak{n} with artinian factors the condition $\operatorname{Ext}_{A}^{1}(A / \mathfrak{m}, A / \mathfrak{n}) \neq 0$ holds for the left A-modules A / \mathfrak{m} and A / \mathfrak{n} if and only if it holds for the right modules A / \mathfrak{n} and A / \mathfrak{m}. The methods proving this are applied to show that noncommutative models of the plane, i.e. algebras of the form $k\langle x, y\rangle /(f)$, where $f \in([x, y])$ are noetherian only in case $(f)=([x, y])$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a non-commutative ring A and simple left A-modules P and Q the $\operatorname{Ext}_{A}^{1}(P, Q)$-group has been studied intensively in several recent papers ([2], [3] and [4]). In this note we prove a sort of duality concerning simple right modules and simple left modules.

We prove that many noncommutative curves, i.e. algebras of the form $k\langle x, y\rangle /(f)$ for some $f \in k\langle x, y\rangle$, are not noetherian. This is proved by combining the method showing the duality result above with classical results.

By a similar method we also prove that for an $f \in([x, y])$ the algebra $k\langle x, y\rangle /(f)$ is noetherian only in case $(f)=([x, y])$.

2. Duality

In the rest of this paper A denotes an associative ring with an identity element and k an infinite field. The main result of this section is the following.

[^0]Theorem 2.1. Let \mathfrak{m} and \mathfrak{n} be twosided maximal ideals with artinian factors. The condition $\operatorname{Ext}_{A}^{1}(A / \mathfrak{m}, A / \mathfrak{n}) \neq$ 0 holds for the left A-modules A / \mathfrak{m} and A / \mathfrak{n} if and only if $\operatorname{Ext}_{A}^{1}(A / \mathfrak{n}, A / \mathfrak{m}) \neq 0$ for the right modules A / \mathfrak{n} and A / \mathfrak{m}.

Proof. Suppose we have a non-zero "Ext"-group as left A-modules.
We have an exact sequence

$$
0 \rightarrow \mathfrak{m} \rightarrow A \rightarrow A / \mathfrak{m} \rightarrow 0
$$

From this we get an exact sequence of right A / \mathfrak{n}-modules

$$
\operatorname{Hom}_{A}(A, A / \mathfrak{n}) \xrightarrow{\phi} \operatorname{Hom}_{A}(\mathfrak{m}, A / \mathfrak{n}) \rightarrow \operatorname{Ext}_{A}^{1}(A / \mathfrak{m}, A / \mathfrak{n}) \rightarrow 0
$$

Hence $\operatorname{Ext}_{A}^{1}(A / \mathfrak{m}, A / \mathfrak{n}) \neq 0$ if and only if ϕ is not onto.
We claim that ϕ is onto precisely when $(\mathfrak{n} \cap \mathfrak{m}) \neq \mathfrak{n m}$.
Since A / \mathfrak{n} is semisimple we have

$$
\mathfrak{m} /(\mathfrak{n m}) \simeq \mathfrak{m} /(\mathfrak{n} \cap \mathfrak{m}) \oplus(\mathfrak{n} \cap \mathfrak{m}) /(\mathfrak{n m})
$$

As A / \mathfrak{n} is semisimple we have that an A / \mathfrak{n}-module M is zero exactly when $\operatorname{Hom}_{A}(M, A / \mathfrak{n})$ is.
Any homomorphism $\mathfrak{m} \rightarrow A / \mathfrak{n}$ vanishes on $\mathfrak{n m}$, but one that is the restriction of some homomorphism $A \rightarrow A / \mathfrak{n}$ vanishes also on $\mathfrak{n} \cap \mathfrak{m}$.

Our claim then follows by combining these observations. Thus we have proved that

$$
\operatorname{Ext}_{A}^{1}(A / \mathfrak{m}, A / \mathfrak{n}) \neq 0 \text { as left modules if and only if } \mathfrak{n} \cap \mathfrak{m} \neq \mathfrak{n m}
$$

By a completely similar argument we get that

$$
\operatorname{Ext}_{A}^{1}(A / \mathfrak{n}, A / \mathfrak{m}) \neq 0 \text { as right modules if and only if } \mathfrak{n} \cap \mathfrak{m} \neq \mathfrak{n m} .
$$

Corollary 2.2. From [1, Exercise 11C] we conclude that there is a link from \mathfrak{n} to \mathfrak{m}, $\mathfrak{n} \sim \mathfrak{m}$ in case $\operatorname{Ext}_{A}^{1}(A / \mathfrak{n}, A / \mathfrak{m}) \neq 0$ as left A-modules.

We need the next remark in Section 4 of this paper.
Remark 2.3. From [5, Corollary 6.18] we get that for a noetherian ring there is at most a countable number of maximal twosided ideals \mathfrak{n} such that for a given $\mathfrak{m}, \operatorname{Ext}_{A}^{1}(A / \mathfrak{n}, A / \mathfrak{m}) \neq 0$ and there is only a finite number of such modules in case the corresponding simple modules are 1-dimensional.

3. Algebraic sets and models of the plane

We use the notation and the result from [4, Sections 1 and 2]. Recall that by f_{0} we denote the homomorphic image of an element $f \in k\langle x, y\rangle$ in $k[x, y]$.

We wish to calculate $\operatorname{Ext}_{A}^{1}(P, Q)$ for 1-dimensional simple left A-modules P and Q. A simple method for doing so can be found in [2, Sections 4 and 5] and in [4, Section 2]. For the readers convenience we briefly recall this construction (cf. [4]).

Let $S=k\left\langle x_{1}, \ldots, x_{m}\right\rangle$ be the free k-algebra on m noncommuting variables. Suppose $0 \neq f \in S$ and ϕ_{P} is the 1-dimensional representation of S corresponding to a point $P=\left(a_{1}, \ldots, a_{m}\right) \in A_{k}^{m}$.

https://daneshyari.com/en/article/4596095

Download Persian Version:
https://daneshyari.com/article/4596095

Daneshyari.com

[^0]: E-mail address: jondrup@math.ku.dk.
 http://dx.doi.org/10.1016/j.jpaa.2014.05.014
 0022-4049/© 2014 Elsevier B.V. All rights reserved.

