
The Journal of Systems and Software 91 (2014) 3–23

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

An overview of Dynamic Software Product Line architectures and
techniques: Observations from research and industry

Rafael Capillaa,∗, Jan Boschb, Pablo Trinidadc, Antonio Ruiz-Cortésc, Mike Hincheyd

a Rey Juan Carlos University, Madrid, Spain
b Chalmers University of Technology, Gothenburg, Sweden
c University of Seville, Seville, Spain
d Lero – The Irish Software Engineering Research Centre, Limerick, Ireland

a r t i c l e i n f o

Article history:
Received 17 November 2012
Received in revised form
16 December 2013
Accepted 23 December 2013
Available online 8 January 2014

Keywords:
Dynamic Software Product Lines
Dynamic variability
Software architecture
Feature models

a b s t r a c t

Over the last two decades, software product lines have been used successfully in industry for building
families of systems of related products, maximizing reuse, and exploiting their variable and configurable
options. In a changing world, modern software demands more and more adaptive features, many of
them performed dynamically, and the requirements on the software architecture to support adapta-
tion capabilities of systems are increasing in importance. Today, many embedded system families and
application domains such as ecosystems, service-based applications, and self-adaptive systems demand
runtime capabilities for flexible adaptation, reconfiguration, and post-deployment activities. However,
as traditional software product line architectures fail to provide mechanisms for runtime adaptation and
behavior of products, there is a shift toward designing more dynamic software architectures and building
more adaptable software able to handle autonomous decision-making, according to varying conditions.
Recent development approaches such as Dynamic Software Product Lines (DSPLs) attempt to face the
challenges of the dynamic conditions of such systems but the state of these solution architectures is
still immature. In order to provide a more comprehensive treatment of DSPL models and their solution
architectures, in this research work we provide an overview of the state of the art and current techniques
that, partially, attempt to face the many challenges of runtime variability mechanisms in the context of
Dynamic Software Product Lines. We also provide an integrated view of the challenges and solutions that
are necessary to support runtime variability mechanisms in DSPL models and software architectures.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, many organizations have adopted a Software Prod-
uct Line (SPL) development approach for building their own
product portfolio with higher quality and at lower cost. The
reduction in time-to-market conditions and the launching of new
products or releases more quickly is one of the key drivers for the
adoption of an SPL strategy. However, as more and more systems
require the adaptation to different context conditions or work-
ing under better quality conditions, a number of challenges have
emerged that static or conventional SPL approaches cannot provide.
Companies producing large-scale software and embedded systems
that require highly configurable options, many of them configured
by end-users at post-deployment time, are facing new challenges to
adapt conventional SPLs to more dynamic approaches able to han-
dle runtime concerns. For more than twenty years, companies have
launched successful product lines to build software products faster

∗ Corresponding author. Tel.: +34 91 4888119.
E-mail address: rafael.capilla@urjc.es (R. Capilla).

and cheaper with higher quality. Several experiences in the product
line hall of fame (Van der Linden et al., 2007) have demonstrated
the benefits of the adoption of a product line approach.

Today, software-intensive embedded system families demand
highly configurable and adaptable mechanisms many of them man-
aged at runtime. Much of these systems are designed using software
architectures that include runtime mechanisms for adaptation pur-
poses, but stringent quality and business requirements drive the
motivation for dynamic extensions, runtime reconfiguration, opti-
mized performance, and autonomous behavior, amongst others.
For instance, mobile and service-based applications have grown
exponentially, affecting a large number of users that use software
and devices that demand runtime post-configuration facilities.
Customizable and context-aware services drive the current trend
of cloud and SOA-based systems for selecting the most suitable
service located anywhere, and context-ware properties play a role
to adjust the service to new context conditions. Furthermore,
binding services dynamically, demands rebinding and multiple
binding capabilities by introducing variants for the dynamic selec-
tion of services, as this feature is not supported by conventional
product lines. Combined approaches mixing SPL and SOA (Gomaa

0164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.12.038

dx.doi.org/10.1016/j.jss.2013.12.038
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.12.038&domain=pdf
mailto:rafael.capilla@urjc.es
dx.doi.org/10.1016/j.jss.2013.12.038

4 R. Capilla et al. / The Journal of Systems and Software 91 (2014) 3–23

and Hashimoto, 2011) deal with the challenges to incorporate
runtime mechanisms addressing context-awareness properties of
services where family members need to evolve after deployment.
In addition, the variety of self-adaptive, self-management, and
autonomous systems (e.g., robots, unmanned vehicles) also require
autonomous behavior and automatic decision-making, often based
on a set of system options that can be activated and deactivated
according to varying context conditions or user preferences.

During the past 15 years, traditional SPL approaches (Bosch,
2000; Clements and Northrop, 2001; Pohl et al., 2005) have suc-
cessfully addressed the development of system families from a
common architecture, maximizing reuse, and exploiting the vari-
ability of systems to produce cheaper and higher-quality products
in less time. However, in a changing world, the increasing need
for adaptive software demands autonomous behavior and self-
management properties bringing new challenges for dynamic
adaptation in system families. As variability becomes more
dynamic, there is a clear to move to recent development approaches
like Dynamic Software Product Lines – DSPLs (Hallsteinsen et al.,
2008; Hinchey et al., 2012; Bencomo et al., 2012) as an emerging
paradigm to handle variability at runtime and at any time.

1.1. Target audience and summary of contributions

The target audience of this work are researchers in the software
architecture and product line engineering fields and also those pro-
fessional SPL designers and engineers who need to migrate from
a conventional SPL to a DSPL or develop software products that
demand dynamic variability mechanisms from scratch. Therefore,
we elaborate a list of major challenges and solutions that cover the
full spectrum of a DSPL. Consequently, we provide our observations
from the trenches from research and industry about the current
state-of-the-art of the DSPL technologies, and more specifically the
need for runtime variability mechanisms. As we have observed that
there are partial solutions that work in isolation, one of the key
contributions of this work is a framework that encompasses the
following:

1. the required DSPL properties consisting of runtime variability
support, multiple and dynamic binding times of products, and a
way to model context properties,

2. the organizational changes a DSPL should have compared to con-
ventional SPLs, and

3. the suggested solutions for each DSPL challenge we describe as
relevant pieces required for launching a DSPL.

These relevant pieces or suggested solutions go from runtime
variability mechanisms for context adaptation purposes to opti-
mization mechanisms aimed to provide the best or the optimal
solution in a given context.

The remainder of this paper as follows. Section 2 provides the
related work regarding DSPLs. In Section 3 we characterize DSPL
elements and processes in a framework. In Section 4 we outline the
role and challenges of runtime variability mechanisms and other
related issues of DSPL research that we will address in the remain-
der of the paper. Section 5 describes the set of technical solutions
necessary to implement and use dynamic variability. In Section
6 we outline examples of use of the proposed solutions in vari-
ous application domains. Section 7 summarizes the discussion the
major results derived from this research and Section 8 draws the
conclusions and future work.

2. Related work

The current limitations of today’s SPL models rely on its inability
to change the structural variability at runtime, provide the dynamic

selection of variants, or handle the activation and deactivation of
system features dynamically and/or autonomously. Because the
development of runtime reconfigurable assets is still innovative
and not fully investigated in the SPL area (Gomaa and Hussein,
2004; Lee and Kang, 2006; Schmid and Kröher, 2009), there is
an important need to support the dynamic properties of systems
and post-deployment capabilities as a new promising research and
development area using DSPL models.

At present, emerging efforts that suggest the use of DSPL-based
models focus on the implementation of runtime variability mech-
anisms and domain-specific languages for reconfiguring software
system options (e.g., Cetina et al., 2009a uses PervML, a domain-
specific language for pervasive systems for reconfiguring a smart
home using a DSPL), in particular for specific application domains
such as smart and autonomic homes, robots, mobile software, or
service-based systems, amongst others. For instance, Cetina et al.
(2010) address the challenges of triggering runtime reconfigura-
tions and understanding the effects of such reconfiguration when
prototyping a DSPL. The authors describe the case of a Smart Hotel
and how Dynamic Software Product Lines can assist a system to
determine the steps during reconfiguration operations at runtime,
such as the activation and deactivation of system features dynami-
cally and based on varying context conditions. Hallsteinsen et al.
(2008) discuss the role of DSPLs in emerging domains, such as
ubiquitous computing, robotics, and life-support services, amongst
others. Because it is impossible to predict all the expected variabil-
ity in a product line, Dynamic Software Product Lines should be
able to produce adaptable software where runtime variations can
be managed in a controlled manner.

Many software applications exhibit random behavior at run-
time, and the service computing area is another promising research
field where DSPLs have a niche to exploit runtime variability
mechanisms for the dynamic selection of services, often based
on changing QoS (Quality-of-Service) properties. Several authors
(Hallsteinsen et al., 2009; Gomaa and Hashimoto, 2011; Istoan et al.,
2009) highlight the importance of using a DSPL for modeling and
implementing service-based systems by encoding dynamic vari-
ability as a decision model for the selection of the services at the
latest binding. However, as the computational complexity during
variant selection may be a drawback for performance in certain
systems that have strong real-time requirements, a DSPL should be
able to handle the necessary adaptations and current reconfigura-
tion tasks after the original deployment. For instance, the Service
Component Architecture (SCA) architecture style, which reconciles
SOA and Component-Based Software Engineering (CBSE), and SCA
platforms can be used to assemble assets dynamically in a run-
ning system (Parra et al., 2009). Bencomo et al. (2010) address the
research theme “when to adapt and how to adapt?” in order to meet
the demand of postponement of decisions on software adaptations
required by dynamic environments and users.

Dynamic product lines are aimed also at binding features
dynamically and to supporting multiple binding times and one or
more variability mechanisms (Abbas et al., 2011). A DSPL nicely
integrates the adaptation of assets and products dynamically in
changing contexts, which helps products to evolve autonomously
when the environment changes and provides self-adaptive and
optimized reconfiguration. Additionally, a DSPL may exploit knowl-
edge and context profiling as a learning capability for autonomic
product evolution by enhancing self-adaptation (Abbas et al., 2011).
However, in the era of post-deployment evolution (Malek et al.,
2012), where embedded systems can change and be deployed
several times, DSPLs offer a solution for software-intensive and
embedded system families as they provide dynamic variability
mechanisms. There are many embedded systems and application
domains where runtime variability can play a key role in order to
support the “autonomic” condition (Kephart and Chess, 2003) and

Download English Version:

https://daneshyari.com/en/article/459614

Download Persian Version:

https://daneshyari.com/article/459614

Daneshyari.com

https://daneshyari.com/en/article/459614
https://daneshyari.com/article/459614
https://daneshyari.com

