
The Journal of Systems and Software 91 (2014) 24–47

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

Dynamic adaptation of service compositions with variability models

G.H. Alféreza,∗, V. Pelechanob, R. Mazoc, C. Salinesi c, D. Diazc

a Facultad de Ingeniería y Tecnología, Universidad de Montemorelos, Apartado 16-5, 67500 Montemorelos, Mexico
b Centro de Investigación en Métodos de Producción de Software (ProS), Universitat Politècnica de València, Camí de Vera s/n, E-46022 Valencia, Spain
c CRI, Panthéon Sorbonne University, 90 rue de Tolbiac, 75013 Paris, France

a r t i c l e i n f o

Article history:
Received 13 November 2012
Received in revised form 6 June 2013
Accepted 17 June 2013
Available online 25 June 2013

Keywords:
Variability
Models at runtime
Autonomic computing
Dynamic adaptation
Dynamic software product line
Web service composition
Constraint programming
Verification

a b s t r a c t

Web services run in complex contexts where arising events may compromise the quality of the whole
system. Thus, it is desirable to count on autonomic mechanisms to guide the self-adaptation of service
compositions according to changes in the computing infrastructure. One way to achieve this goal is by
implementing variability constructs at the language level. However, this approach may become tedious,
difficult to manage, and error-prone. In this paper, we propose a solution based on a semantically rich
variability model to support the dynamic adaptation of service compositions. When a problematic event
arises in the context, this model is leveraged for decision-making. The activation and deactivation of
features in the variability model result in changes in a composition model that abstracts the underlying
service composition. These changes are reflected into the service composition by adding or removing
fragments of Business Process Execution Language (WS-BPEL) code, which can be deployed at runtime.
In order to reach optimum adaptations, the variability model and its possible configurations are verified at
design time using Constraint Programming. An evaluation demonstrates several benefits of our approach,
both at design time and at runtime.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Software is executed in complex, heterogeneous, and highly
intertwined computing infrastructures in which a diversity of
events may arise. For example, security threats, network problems,
performance reduction in one of the servers, etc. In these situa-
tions, it is desirable to adapt the software to continue offering the
required functionality. Software adaptation can be seen as the abil-
ity for humans to reconfigure the software and then restart it, or
the ability of the software to reconfigure itself during execution
(Akkawi et al., 2007). The first case can be referred to as static adap-
tation and the second one as dynamic adaptation. It is possible to
carry out static adaptations in cases where the system can be shut
down in order to make the required manual adaptations. However,
there are critical systems that cannot be stopped to implement
the adaptations, e.g. software that run power grids and software
for global banking. In such cases, software needs to dynamically
adapt its behavior at runtime in response to changing conditions
in its supporting computing infrastructure (McKinley et al., 2004;
Cetina et al., 2009; Alférez and Pelechano, 2011a). Dynamic adapta-
tion of software behavior refers to the act of changing the behavior

∗ Corresponding author. Tel.: +34 635215647.
E-mail addresses: harveyalferez@um.edu.mx, harveyalferez@gmail.com

(G.H. Alférez), pele@dsic.upv.es (V. Pelechano), raulmazo@gmail.com (R. Mazo),
camille.salinesi@univ-paris1.fr (C. Salinesi), daniel.diaz@univ-paris1.fr (D. Diaz).

of some part of a software system as it executes, without stopping
or restarting it (Keeney, 2004).

In order to carry out dynamic adaptations, we argue that soft-
ware needs to take the following key issues into account:

• Context Awareness: For the purpose of supporting dynamic
adaptations, software should be aware of changes in its context.
The context is any information that can be used to characterize
the situation of an entity (Dey, 2001). Context-aware systems are
concerned with the acquisition of context, the abstraction and
understanding of context, and application behavior based on the
recognized context (Schmidt, 2002).

• Adaptation Policies: Adaptation policies change the behavior of
the system during execution (Morin et al., 2008). They state in
a declarative manner the actions required to adapt the running
system to a configuration that better fits its current context.

• A Supporting Infrastructure: It is unthinkable to depend on
manual adaptations because of the inherent intricacy of today’s
systems and the desired prompt responses. Furthermore, critical
systems cannot be stopped in order to carry out the necessary
adaptations. Thus, a computing infrastructure should provide
support for dynamic adaptations to face context events (Alférez
and Pelechano, 2011a; Cetina et al., 2009).

• Verification: Adapting the system according to changes in the
context is not enough. It is necessary to ensure that new system
configurations are not invalid in a given situation.

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.06.034

dx.doi.org/10.1016/j.jss.2013.06.034
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.06.034&domain=pdf
mailto:harveyalferez@um.edu.mx
mailto:harveyalferez@gmail.com
mailto:pele@dsic.upv.es
mailto:raulmazo@gmail.com
mailto:camille.salinesi@univ-paris1.fr
mailto:daniel.diaz@univ-paris1.fr
dx.doi.org/10.1016/j.jss.2013.06.034

G.H. Alférez et al. / The Journal of Systems and Software 91 (2014) 24–47 25

1.1. The need for dynamic adaptation of service compositions

A good example of systems that require dynamic adaptations
are the ones based on Web service compositions (or simply called
service compositions). Web services have evolved as a standardized
and technology-agnostic interoperable way of integrating pro-
cesses and applications (Little, 2003). Basically, a Web service is
a special software component that is searched, bound, and exe-
cuted at runtime and allows systems to interact through standard
Internet protocols (Koning et al., 2009). In order to reach the full
potential of Web services, they can be combined to achieve specific
functionalities. If the implementation of a Web service business
logic involves the invocation of other Web services, it is called a
composite service. The process of assembling a composite service is
called service composition.

Web services run in a context (e.g. their operating computing
infrastructure). In an ideal scenario, Web service operations would
do their job smoothly. However, several exceptional situations may
arise in the complex, heterogeneous, and changing contexts where
they run. For instance, a Web service operation may have greatly
increased its response time or may have become unavailable. Cases
like these make evident the need for dynamic adaptations in critical
systems that are based on service compositions. These adaptations
may be triggered in order to do the following at runtime: keep
certain contracts known as service-level agreements (SLAs), offer
extra functionality depending on the context, protect the system,
or make the system more usable.

Related work about dynamic adaptation of service compositions
can be classified into three groups. The first group supports dynamic
adaptation at the language level (Colombo et al., 2006; Koning et al.,
2009; Baresi and Guinea, 2011; Narendra et al., 2007; Sonntag and
Karastoyanova, 2011; Moser et al., 2008). This approach can hin-
der reasoning about adaptations with complex and error-prone
scripts (Fleurey and Solberg, 2009). The second group focuses on
low-level implementation mechanisms for self-adaptation (Erradi
and Maheshwari, 2005; Cardellini et al., 2010; Mosincat and Binder,
2008). This approach lacks support for analyzing the inherent vari-
ability of dynamic adaptation at design time. The third group deals
with modeling variability in service compositions that support
business processes (BPs) (Nguyen et al., 2011; Sun et al., 2010;
Hadaytullah et al., 2009; Razavian and Khosravi, 2008; Rosemann
and Van der Aalst, 2007; Gottschalk et al., 2008; Puhlmann et al.,
2005). Research works in this group propose the creation of vari-
ability models that are only used at design time. We argue that the
knowledge in variability models should be leveraged at runtime to
guide adaptations and hide the complexity of the adaptation space.
Moreover, the approaches in the aforementioned groups lack ver-
ification of possible service composition configurations caused by
dynamic adaptations.

1.2. Contribution

In this paper, we propose a framework that uses variability
models at runtime to support the dynamic adaptation of service
compositions. This framework spans over design time and run-
time, and states the models, tools, and artifacts that can be used
to support dynamic adaptations.

At design time, the framework provides tool-supported steps
for creating the models that guide autonomic changes. In general
terms, a service composition can be viewed as the assembly of
pieces to deliver functionality; those pieces can be Web services
offered by different providers or composite services themselves.
We argue that in the advent of problematic events, functional
pieces can be added, removed, replaced, split or merged from a
service composition at runtime, hence delivering a new service
composition configuration. To this end, we propose that

service compositions be abstracted as a set of features in a vari-
ability model. A feature can be defined as “a logical unit of behavior
specified by a set of functional and non-functional requirements”
(Bosch, 2000). Thus, adaptation policies describe the dynamic
adaptation of a service composition in terms of the activation or
deactivation of features in the causally connected variability model
(i.e., changes in this model cause the service composition to adapt
and vice versa). The variability model and its possible configura-
tions are verified by means of Constraint Programming (CP) prior
execution to ensure safe recompositions.

At runtime, a computing infrastructure detects problematic
events that arise in the context and carries out the necessary adjust-
ments on the service composition. The activation and deactivation
of features in the variability model result in changes in a composi-
tion model, which is an abstract representation of the underlying
service composition. These changes are reflected into the service
composition by adding or removing fragments of Business Process
Execution Language (WS-BPEL) code, which are deployed at run-
time. WS-BPEL is a standard language for specifying BP behavior
based on Web Services (OASIS, 2007). Flexible service composi-
tion updates are possible through Dynamic Software Product Line
(DSPL) engineering (Hallsteinsen et al., 2008).

This paper offers several novel contributions beyond those of
our previously published works (Alférez and Pelechano, 2011a,b,
2012b; Cetina et al., 2009): (1) in our previous work, the generation
of variability model configurations was carried out manually. This
was an error-prone and time-consuming task. As a result, in this
paper we propose a tool that automatizes the creation of variabil-
ity model configurations at design time; (2) our previous work did
not support the verification of the variability model and its possible
configurations. As a result, some undesirable dynamic adaptations
could emerge at runtime. Therefore, in this paper we incorporate a
constraint logic programming solver to automatize the verification
of the variability model and its configurations. Although this solver
has been used in our previous work (Mazo et al., 2012), it is the first
time that it is used to verify the variability model configurations
that are used at runtime; (3) context reasoning has been further
exploded by means of inference rules and more expressive adapta-
tion policies; (4) we propose an strategy to avoid the saturation of
the system when several context events arise in tight time frames;
(5) in our previous work, the translation of changes in the composi-
tion model into WS-BPEL code was slow (Torres et al., 2012). In this
paper, we propose a faster solution based on fragments of WS-BPEL
code; and (6) in this paper, our approach supports dynamic adap-
tations on an enterprise orchestration engine. Instead of extending
the functionality of the orchestration engine, we offer a transparent
solution in which the engine does not have to be modified.

The remainder of this paper is structured as follows: Section 2
describes a running example that illustrates the need for dynamic
adaptation of service compositions. Section 3 gives an overview
of our framework for dynamic adaptation of service compositions.
Section 4 describes the models that are created at design time to
support dynamic adaptations. Section 5 describes the computing
infrastructure to deal with dynamic adaptations. Section 6 intro-
duces a demonstration of our framework. Section 7 presents the
evaluation of our framework. Section 8 presents related work, and
Section 9 presents conclusions and future work.

2. Running example

To illustrate the need for self-adaptive service compositions, we
introduce a composite service that supports online book shopping
at Orange Country Bookstore. The example is specified with the
Business Process Model and Notation (BPMN) in Fig. 1. BPMN
tasks express Web service operations (e.g. UPS Shipping service);

Download English Version:

https://daneshyari.com/en/article/459615

Download Persian Version:

https://daneshyari.com/article/459615

Daneshyari.com

https://daneshyari.com/en/article/459615
https://daneshyari.com/article/459615
https://daneshyari.com

