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It is shown that the set of orbits of the action of the elementary symplectic 
transvection group on all unimodular elements of a symplectic module over a 
commutative ring in which 2 is invertible is identical with the set of orbits of the 
action of the corresponding elementary transvection group. This result is used to get 
improved injective stability estimates for K1 of the symplectic transvection group 
over a non-singular affine algebras.
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1. Introduction

In this paper we discuss two related questions about (linear and symplectic) elementary transvections of 
a projective R-module (resp. symplectic R-module) of type R⊕ P (resp. (H(R) ⊕ (P, 〈, 〉))).

The first one is about comparing the groups generated by the two different types of elementary transvec-
tions; and showing that they are the same. (This fact seems to have escaped notice earlier; and experts have 
told us that it is interesting, and opens up the study done on these transvections.)

The second one is to show that the linear and symplectic elementary transvection orbits of a unimodular 
element in a symplectic module coincide. (This generalizes the result in [7] where it was shown in the free 
case.)

We now describe the two problems a bit more in detail.
H. Bass introduced two types of linear transvections of a projective module R ⊕ P in [3]. He also 

introduced two types of symplectic transvections of a symplectic module H(R) ⊕(P, 〈, 〉). (These are recalled 
in Section 4 and Section 5.)

Since elementary automorphisms are homotopic to the identity, we are able to invoke Quillen–Suslin 
theory (see [11,13]) to show that
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• the groups generated by the two types of elementary linear transvections are the same as the elementary 
linear group in the free case (see Lemma 4.5);

• the group generated by the two types of elementary symplectic transvections w.r.t. the standard alter-
nating form are the same as the elementary symplectic group in the free case (see Lemma 5.14).

The above generalizes the special case of these results in ([6], Theorem 2).
The title of this paper alludes to the comparison of the elementary linear and elementary symplectic 

orbits of a unimodular element (a, b, p) in a symplectic module (H(R) ⊕P ). In case P is free of rank ≥ 4, it 
is established in ([7], Theorem 4.2, Theorem 5.6) that these two orbits coincide. In Appendix A the missing 
case when P is free of rank 2 is proved by a similar, but slightly more involved argument. (This means one 
has to essentially prove Lemma 2.9 and Lemma 3.1 in [7].)

Since elementary automorphisms are homotopic to the identity, we show how the Quillen–Suslin machin-
ery enables one to extend the results of [7] to show that the two orbits are equal in the general case when 
P is a finitely generated projective module. (The transition is by no means automatic!)

2. Preliminaries

A row v = (v1, . . . , vn) ∈ Rn is said to be unimodular if there are elements w1, . . . , wn in R such that 
v1w1 + · · · + vnwn = 1. Umn(R) will denote the set of all unimodular rows v ∈ Rn. Let I be an ideal in R. 
We denote by Umn(R, I) the set of all unimodular rows of length n which are congruent to e1 = (1, 0, . . . , 0)
modulo I. (If I = R, then Umn(R, I) is Umn(R).)

Definition 2.1. Let P be a finitely generated projective R-module. An element p ∈ P is said to be unimodular
if there exists an R-linear map φ : P → R such that φ(p) = 1. The collection of unimodular elements of P
is denoted by Um(P ).

Let P be of the form R⊕Q and have an element of the form (1, 0) which correspond to the unimodular 
element. An element (a, q) ∈ P is said to be relative unimodular w.r.t. an ideal I of R if (a, q) is unimodular 
and (a, q) is congruent to (1, 0) modulo IP. The collection of all relative unimodular elements w.r.t. an ideal 
I is denoted by Um(P, IP).

Let us recall that if M is a finitely presented R-module and S is a multiplicative set of R, then 
S−1HomR(M, R) ∼= HomRS

(MS , RS). Also recall that if f = (f1, . . . , fn) ∈ Rn := M , then ΘM (f) =
{φ(f) : φ ∈ Hom(M, R)} =

∑n
i=1 Rfi. Therefore, if P is a finitely generated projective R-module of rank 

n, m is a maximal ideal of R and v ∈ Um(P ), then vm ∈ Umn(Rm). Similarly if v ∈ Um(P, IP) then 
vm ∈ Umn(Rm, Im).

The group GLn(R) of invertible matrices acts on Rn in a natural way: v −→ vσ, if v ∈ Rn, σ ∈ GLn(R). 
This map preserves Umn(R), so GLn(R) acts on Umn(R). Note that any subgroup G of GLn(R) also 
acts on Umn(R). Let v, w ∈ Umn(R), we denote v ∼G w or v ∈ wG if there is a g ∈ G such that 
v = wg.

Let En(R) denote the subgroup of SLn(R) consisting of all elementary matrices, i.e. those matrices 
which are a finite product of the elementary generators Eij(λ) = In + eij(λ), 1 ≤ i 
= j ≤ n, λ ∈ R, where 
eij(λ) ∈ Mn(R) has an entry λ in its (i, j)-th position and zeros elsewhere.

In the sequel, if α denotes an m ×n matrix, then we let αt denote its transpose matrix. This is of course 
an n ×m matrix. However, we will mostly be working with square matrices, or rows and columns.

Definition 2.2 (The relative groups En(I), En(R, I)). Let I be an ideal of R. The relative elementary group 
En(I) is the subgroup of En(R) generated as a group by the elements Eij(x), x ∈ I, 1 ≤ i 
= j ≤ n.

The relative elementary group En(R, I) is the normal closure of En(I) in En(R).
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