
The Journal of Systems and Software 91 (2014) 48–62

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

Efficient customization of multi-tenant Software-as-a-Service
applications with service lines

Stefan Walravena,∗, Dimitri Van Landuyta, Eddy Truyena,
Koen Handekynb, Wouter Joosena

a iMinds-DistriNet, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
b UnifiedPost, Avenue Reine Astrid 92A, 1310 La Hulpe, Belgium

a r t i c l e i n f o

Article history:
Received 15 November 2012
Received in revised form 9 January 2014
Accepted 13 January 2014
Available online 22 January 2014

Keywords:
Multi-tenancy
SaaS
Variability

a b s t r a c t

Application-level multi-tenancy is an architectural approach for Software-as-a-Service (SaaS) applica-
tions which enables high operational cost efficiency by sharing one application instance among multiple
customer organizations (the so-called tenants). However, the focus on increased resource sharing typi-
cally results in a one-size-fits-all approach. In principle, the shared application instance satisfies only the
requirements common to all tenants, without supporting potentially different and varying requirements
of these tenants. As a consequence, multi-tenant SaaS applications are inherently limited in terms of
flexibility and variability.

This paper presents an integrated service engineering method, called service line engineering, that sup-
ports co-existing tenant-specific configurations and that facilitates the development and management of
customizable, multi-tenant SaaS applications, without compromising scalability. Specifically, the method
spans the design, implementation, configuration, composition, operations and maintenance of a SaaS
application that bundles all variations that are based on a common core.

We validate this work by illustrating the benefits of our method in the development of a real-world
SaaS offering for document processing. We explicitly show that the effort to configure and compose an
application variant for each individual tenant is significantly reduced, though at the expense of a higher
initial development effort.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Software as a Service (SaaS) has become a common software
delivery model. It is a form of cloud computing that involves offer-
ing software services in an on-line and on-demand fashion (with
the Internet as the main delivery mechanism). One of the key
enablers in cloud computing to achieve economies of scale is multi-
tenancy (Chong and Carraro, 2006; Guo et al., 2007): the sharing of
resources among a large group of customer organizations, called
tenants. This architectural concept can be applied at various levels
of the software stack: at the infrastructure level (i.e. virtualization),
at the OS and middleware level, and even at the application level.

∗ Corresponding author. Tel.: +32 16327640.
E-mail addresses: stefan.walraven@cs.kuleuven.be (S. Walraven),

dimitri.vanlanduyt@cs.kuleuven.be (D. Van Landuyt), eddy.truyen@cs.kuleuven.be
(E. Truyen), koen.handekyn@unifiedpost.com (K. Handekyn),
wouter.joosen@cs.kuleuven.be (W. Joosen).

Each approach makes a different trade-off between (i) maximiz-
ing scalability and operational cost benefits (including hardware
and software resource usage as well as maintenance effort), and (ii)
maximizing flexibility to meet the potentially different and varying
tenant-specific requirements (Walraven et al., 2011).

This paper focuses on application-level multi-tenancy.
Application-level multi-tenancy achieves the highest degree
of resource sharing between tenants (Chong and Carraro, 2006;
Walraven et al., 2011). End users from different tenants are simul-
taneously served by a single application instance on top of shared
infrastructure. However, when compared to infrastructure-level
and middleware-level multi-tenancy, the inherent limitations
in variability form a crucial disadvantage. The high degree of
resource sharing typically results in a one-size-fits-all approach:
the multi-tenant application only satisfies the requirements that
are common to all tenants. Support for different and varying
requirements of the different tenants is lacking.

To shorten the time-to-market, the initial development and
release cycles of a SaaS application are typically focused on the

0164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2014.01.021

dx.doi.org/10.1016/j.jss.2014.01.021
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.01.021&domain=pdf
mailto:stefan.walraven@cs.kuleuven.be
mailto:dimitri.vanlanduyt@cs.kuleuven.be
mailto:eddy.truyen@cs.kuleuven.be
mailto:koen.handekyn@unifiedpost.com
mailto:wouter.joosen@cs.kuleuven.be
dx.doi.org/10.1016/j.jss.2014.01.021

S. Walraven et al. / The Journal of Systems and Software 91 (2014) 48–62 49

needs of the first customer organizations (tenants). As the SaaS
offering becomes more successful, an increasing amount of vari-
ations (ranging from minimal to substantial) is implemented to
service new tenants and an increasing amount of tenant-specific
configurations therefore have to co-exist at run time. This easily
leads to an explosion of relatively small variations in the imple-
mentation as well as in the different configurations. This real-world
scenario is experienced in many specific business cases; we have
identified a lack in methodical support for the development and cus-
tomization of multi-tenant applications. This lack of support can be
characterized by two essential challenges:

First, SaaS providers need to be able to manage and reuse the
different configurations and software variations in an efficient way,
without compromising scalability; e.g. by avoiding additional over-
head when provisioning new tenants.

Secondly, part of realizing the scalability benefits of SaaS is
achieved by self-service: shifting some of the configuration efforts
to the tenant side, e.g. by allowing the tenant to manage his
tenant-specific requirements and by automating the run-time con-
figuration process. Therefore, tenants require additional support to
manage the configuration in a tenant-driven customization approach.

In the state of the art, some work has been performed to
combine the benefits of software product line engineering (SPLE)
(Clements and Northrop, 2001; Pohl et al., 2005) with those of
multi-tenancy to facilitate the customization of SaaS applications
tailored to the tenant-specific needs (Mietzner and Leymann, 2008;
Mietzner et al., 2009; Walraven et al., 2011; Schroeter et al., 2012a).
We define a service line as a specific concept that leverages on
the notion of software product lines by offering a shared appli-
cation instance that still is dynamically customizable to different
tenant-specific requirements. However, none of the current service
engineering approaches offer a complete customization process
for multi-tenant applications. Moreover, customization is often
limited to specific technologies or to specific types of applications.

Our solution is a feature-oriented method that is highly inte-
grated, in the sense that the feature-level variability that is
introduced in the early development stages is consistently and
explicitly supported in each of the subsequent development stages,
also in the run-time environment. This is a key difference with
respect to traditional SPLE. Instead of delivering a dedicated,
separate application product for each tenant (cf. the application
engineering phase in SPLE), the entire service line (including all
variations) is instantiated and deployed only once and simul-
taneously shared by all tenants. Specific software variants are
activated at run time within one single SaaS application instance.

The main contribution of this paper is an integrated service
line engineering method that focuses on addressing variability up
front without compromising the scalability of SaaS applications.
This method starts with the initial development phases (require-
ments engineering, architectural design and implementation) of
the service line, but also focuses on the deployment, run-time con-
figuration and composition, the operations and maintenance. The
method is generic in the sense that each stage is open for exist-
ing work in the state of the art to be leveraged upon, yet it imposes
some specific constraints (e.g. composability and traceability of fea-
tures) and requires some enablers (e.g. multi-tenancy, feature-level
versioning, tenant-level configuration interfaces) for service line
variability.

We have validated this method in the development of an
industry-level SaaS application in the domain of online B2B doc-
ument processing. To this end, we closely collaborated with an
industrial SaaS provider in the context of a collaborative research
project (CUSTOMSS, 2011). Our evaluation focuses on illustrating (i)
the efficiency benefits with respect to addressing the management
complexity of many co-existing tenant-specific configurations, and
(ii) the trade-off between the early effort required to design and

implement the initial service line, and the late effort required to
configure and compose application variants, to provision new ten-
ants as well as to update and maintain the service line as a whole.

The structure of this paper is as follows. Section 2 motivates this
work and elaborates on the problem statement. Section 3 articu-
lates the concept of a service line and describes the service line
engineering method. In Section 4, this method is applied on a SaaS
application in the domain of document processing. We evaluate
and discuss our work in terms of the efficiency benefits associated
with service lines in this specific SaaS application in Section 5. In
Section 6, related work is discussed and Section 7 concludes the
paper.

2. Problem elaboration

The motivation for this paper is based on our extensive insight
into the current state of practice of a number of industrial SaaS
providers (which was obtained in the context of several applied
research projects, e.g. CUSTOMSS, 2011). In this section, we first
present our characterization of this current state of practice of
developing, operating, and maintaining multi-tenant SaaS appli-
cations. Then, we list the main challenges that are addressed in this
paper.

2.1. State of the practice

We present a number of development and management activ-
ities that occur in the lifecycle of a multi-tenant SaaS application.
Specifically, we focus on the customization and management chal-
lenges that SaaS providers face to efficiently offer and manage their
offerings.

The following stakeholders are involved in these scenarios. The
SaaS architect, SaaS developer and SaaS operator are employees of
the SaaS provider. In addition, each tenant should assign a tenant
administrator role to the person responsible for managing the SaaS
application on behalf of the tenant organization (e.g. for user and
configuration management). In theory, this role can be assigned to
an internal user of the tenant or to the SaaS provider, or even to
value-added resellers who are a business channel between tenants
and the SaaS provider. In practice, the tenant administrator is often
an employee of the SaaS provider, as detailed technical knowledge
of the SaaS application is required.

Scenario #1: Initial development of the SaaS application. This sce-
nario entails the initial design and development of a multi-tenant
SaaS application by the SaaS architect and the SaaS developers.
The SaaS operator is responsible for deploying and managing the
(running) implementation of this SaaS application.

To shorten the initial time-to-market, the first development
cycles of a SaaS application are typically focused strongly on the
needs of the first customer organizations (tenants). As a result, the
SaaS application typically supports limited variability beyond the
scope of the initial tenants.

Scenario #2: Provision a new tenant. In this scenario, a new tenant
wants to use the SaaS application and customize it to its require-
ments. We assume that the SaaS application already covers the
requirements of the new tenant, e.g. because these requirements
are very similar to those of already provisioned tenants. (Scenario
#4 covers the case where new requirements have to be supported.)

Based on his (technical) knowledge about the application,
the tenant administrator has to manually translate the tenant’s
requirements into a software configuration for the multi-tenant
SaaS application. Obviously when certain requirements of the
new tenant are similar to those of other tenants, parts of the
existing configuration can be reused. In practice, this is done in a
weakly controlled and error-prone manner (e.g. by copy-pasting

Download English Version:

https://daneshyari.com/en/article/459616

Download Persian Version:

https://daneshyari.com/article/459616

Daneshyari.com

https://daneshyari.com/en/article/459616
https://daneshyari.com/article/459616
https://daneshyari.com

