
The Journal of Systems and Software 91 (2014) 63–84

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Delta-oriented model-based integration testing of large-scale
systems�

Malte Lochaua, Sascha Lityb,∗, Remo Lachmannc, Ina Schaeferc, Ursula Goltzb

a TU Darmstadt, Real-Time Systems Lab, Germany
b TU Braunschweig, Institute for Programming and Reactive Systems, Germany
c TU Braunschweig, Institute of Software Engineering and Automotive Informatics, Germany

a r t i c l e i n f o

Article history:
Received 19 November 2012
Received in revised form 4 November 2013
Accepted 17 November 2013
Available online 23 November 2013

Keywords:
Large-scale systems
Model-based testing
Regression testing
Variable software architectures

a b s t r a c t

Software architecture specifications are of growing importance for coping with the complexity of large-
scale systems. They provide an abstract view on the high-level structural system entities together with
their explicit dependencies and build the basis for ensuring behavioral conformance of component imple-
mentations and interactions, e.g., using model-based integration testing. The increasing inherent diversity
of such large-scale variant-rich systems further complicates quality assurance. In this article, we present
a combination of architecture-driven model-based testing principles and regression-inspired testing
strategies for efficient, yet comprehensive variability-aware conformance testing of variant-rich systems.
We propose an integrated delta-oriented architectural test modeling and testing approach for compo-
nent as well as integration testing that allows the generation and reuse of test artifacts among different
system variants. Furthermore, an automated derivation of retesting obligations based on accurate delta-
oriented architectural change impact analysis is provided. Based on a formal conceptual framework that
guarantees stable test coverage for every system variant, we present a sample implementation of our
approach and an evaluation of the validity and efficiency by means of a case study from the automotive
domain.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Modern software systems are increasingly large-scaled. They
often exist in many different variants in order to adapt to their
environment context. Additionally, they evolve over time into dif-
ferent versions in order to satisfy changing user requirements. This
diversity in space and time causes high complexity during system
design and implementation as well as for quality assurance. Soft-
ware architecture (SA) specifications are of growing importance for
coping with these variant-rich large-scale software systems. SAs
provide an abstract view on the high-level structural system enti-
ties together with their explicit interdependencies which alleviates
complexity during system development. This decreases develop-
ment complexity by allowing a hierarchical decomposition of the
overall system into smaller subsystems and their components. For
quality assurance, an architectural design builds the basis for ensur-
ing behavioral conformance of component implementations and

� This work was partially supported by the DFG (German Research Foundation)
under the Priority Programme SPP1593: Design For Future – Managed Software
Evolution.

∗ Corresponding author. Tel.: +49 531 391 3276.
E-mail address: lity@ips.cs.tu-bs.de (S. Lity).

interactions w.r.t. architectural specifications, e.g., using model-
based component and integration testing.

The adoption of SA testing approaches to variant-rich software
systems faces the challenge to ensure correctness of component
implementations and interactions for any possible system variant
which is, in general, infeasible due to their high number. Even if
every system variant could be tested in isolation, this is very inef-
ficient because of the commonality between the variants that is
checked over and over again.

To counter this problem, we combine architecture-driven
model-based testing principles and regression-based testing
strategies for efficient, yet comprehensive conformance testing
on the component and on the integration test level. We model
the expected behavior of a system by its architectural specifica-
tion in terms of components and connectors. The intra-component
behavior is captured by state machines. However, applying the
corresponding model-based testing techniques also to component
integration testing on the basis of a parallel composition of those
component state machines is, in general, impracticable for large-
scale systems due to the well-known state-explosion-problem.
Instead, component interaction scenarios to be tested are explic-
itly specified by message sequence charts as proposed, e.g., in
Briand et al. (2012). In order to express system diversity, we apply
the principles of delta modeling to the system description on the

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.11.1096

dx.doi.org/10.1016/j.jss.2013.11.1096
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.11.1096&domain=pdf
mailto:lity@ips.cs.tu-bs.de
dx.doi.org/10.1016/j.jss.2013.11.1096

64 M. Lochau et al. / The Journal of Systems and Software 91 (2014) 63–84

architectural as well as on the component level. Delta modeling
(Clarke et al., 2010; Schaefer et al., 2010, 2011) is a modular, yet
flexible way to capture variability in time and in space by explic-
itly specifying the changes between system variants. In this way,
we obtain a concise description of the commonality and variabil-
ity of the expected behavior between system variants. Thereupon,
we are able to automatically derive a regression delta explicitly
capturing differences among arbitrary system variants/versions.
In contrast to classical regression testing requiring fine-grained,
therefore, expensive tracings of changes (Engström et al., 2008),
e.g., by means of model differencing (Treude et al., 2007; Kelter
and Schmidt, 2008), the regression delta allows us to efficiently
reason about preplanned test artifact reuse among system ver-
sions/variants at all testing levels in a sound and uniform way. We
further use this delta-oriented representation to reduce retesting
common behaviors of system variants by relying on the princi-
ples of regression testing. The derivation of the regression testing
obligations between two system variants is based on an impact
analysis of the architectural and behavioral changes specified in
the respective regression delta.

The contribution of this work is twofold: (1) we introduce
delta-oriented architecture test modeling to achieve the systematic
reuse of common test artifacts between different system vari-
ants and/or versions and (2) we apply delta-oriented regression
planning for the systematic evolution of variable test artifacts
among different software variants and/or versions. This article
extends our previous work on delta-oriented component testing
(Lochau et al., 2012) by leveraging the idea of delta-oriented test
modeling and test artifact evolution to the integration test level
and combines delta-oriented component and scalable integration
testing of variant-rich software systems into one unified frame-
work.

We illustrate and evaluate our approach in a prototypical imple-
mentation by means of a case study from the automotive domain,
a simplified Body Comfort System (BCS). Its original version was
proposed by Müller et al. (2009) in cooperation with an industrial
partner and was enhanced to a variant-rich system by Oster et al.
(2011). The BCS comprises a number of standard and optional func-
tions. All BCS include by default a Human Machine Interface (HMI)
as point of interaction with a driver, an electric Exterior Mirror (EM)
with optional heating functionality, either an Automatic Power Win-
dow (AutoPW) or a Manual Power Window (ManPW), and a Finger
Protection (FP) blocking the window movement when a finger is
clamped in a window. Optionally, a BCS can consist of a Remote
Control Key (RCK) enabling the locking/unlocking of the car as well
as the controlling of the window movement, an Alarm System (AS)
with optional Interior Monitoring (IM), a Central Locking System (CLS)
with optional Automatic Locking (AL) when the car is driving, and
for some functions like the CLS Status LEDs (LED) indicating the
activation/inactivation of the corresponding function. The planned
combination of those functional variants results in 11,616 possible
variants of the BCS.

This article is structured as follows: In Section 2, we present the
foundations for delta-oriented model-based testing. In Section 3,
we describe our integrated framework for model-based compo-
nent and integration testing. In Section 4, we apply the principles
of delta modeling to obtain variable test models both on the compo-
nent and the integration level. In Section 5, we show how to evolve
the test artifacts between system variants and/or versions at all
test levels based on the derivation of regression deltas and, there-
upon, we describe an incremental testing work flow incorporating
a systematic evolution of test artifacts. In Section 6, we present our
prototypical tool chain. In Section 7, we describe the case study
design and, thereupon, we discuss the results of our evaluation in
Section 8. We compare our approach to related work in Section 9
and conclude in Section 10.

2. Fundamentals of delta-oriented model-based testing

In this section, we describe the general concepts of our incre-
mental model-based testing approach for variant-rich large-scale
(software) systems based on delta-oriented test model specifica-
tions. This generalized framework is later instantiated to guarantee
efficient, yet reliable test coverage at both component as well as
integration level.

2.1. Foundations of model-based testing

Model-based testing aims at the automation of black-box testing
processes (Utting and Legeard, 2007). The fundamental test arti-
facts involved in those model-based testing processes for a single
software system under test together with their interrelations are
depicted in Fig. 1(a). A test model tm specifies the intended behav-
iors of the software implementation under test sut. The (partial)
verification of the behavioral conformance of the sut to the test
model tm is performed by selecting a finite set of test cases, i.e., rep-
resentative executions of the software system extracted from the
test model (De Nicola, 1987). The sut passes the experimental exe-
cution of a test case tc if it reacts as intended, i.e., as specified in the
corresponding test model tm. Functional test cases usually define a
sequence of controllable input stimuli to be injected into the soft-
ware system under test, together with a corresponding sequence
of system outputs stating the reactions expected for those inputs.

A test case tc is valid for a test model tm if it conforms to a behav-
ior as specified by the test model. By TC(tm) we refer to the set of
all valid test cases defined by the test model tm. In general, this
set contains an infinite number of test cases and the corresponding
execution sequences are of potentially infinite length. The selection
of a finite set of representative test cases of finite length into a test
suite TS ⊆ TC(tm) is usually based on adequacy criteria measuring
the quality of test suites (Utting and Legeard, 2007). For instance, a
model-based coverage criterion CC applied to a test model tm selects
a finite subset CC(tm) = TG ⊆ TG(tm) of test goals, i.e., particular struc-
tural elements occurring in the test model. By TG(tm) we refer to
the set of all possible test goals within test model tm.

For a test suite TS to satisfy a coverage criterion, each selected
test goal tg ∈ TG is to be covered, i.e., traversed by at least one test
case tc ∈ TS. Correspondingly, we have an n-to-m correspondence

coversCC ⊆ TC(tm) × TG(tm)

between test cases tc ∈ TS ⊆ TC(tm) and the set of test goals selected
for a criterion CC. Please note that we may omit the index CC in the
following if not relevant. These abstract notions for model-based
testing are independent of the actual representation of test mod-
els, test cases, test goals, etc. Their concrete instantiation depends
on the modeling formalism, the system level, and the development
phase to be addressed by the corresponding testing campaigns
(Utting and Legeard, 2007). As illustrated in Fig. 2, different kinds
of test models and corresponding test artifacts are usually applied
depending on the testing stage and the software units under con-
sideration. For our architecture-based approach to model-based
testing of single components, as well as their integration at the
architectural level, we consider the following, mutually interre-
lated models:

• Architecture model. The decomposition of the overall software
system into components and the specification of communica-
tion relationships between those components are specified in a
high-level structural system description based on component-
connector abstractions. We use those architecture models as a
basis for planning component and integration testing of large-
scale systems.

Download English Version:

https://daneshyari.com/en/article/459617

Download Persian Version:

https://daneshyari.com/article/459617

Daneshyari.com

https://daneshyari.com/en/article/459617
https://daneshyari.com/article/459617
https://daneshyari.com

