

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Engel condition on enveloping algebras of Lie superalgebras

Salvatore Siciliano^a, Hamid Usefi^{b,*,1}

 Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Via Provinciale Lecce-Arnesano, 73100-Lecce, Italy
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL,

^b Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada

ARTICLE INFO

Article history: Received 14 April 2014 Received in revised form 21 April 2015

Available online 9 June 2015 Communicated by E.M. Friedlander

MSC:

16R10; 16R40; 17B35; 17B60

ABSTRACT

Let L be a Lie superalgebra over a field of characteristic $p \neq 2$ with enveloping algebra U(L) or let L be a restricted Lie superalgebra over a field of characteristic p > 2 with restricted enveloping algebra u(L). In this note, we establish when u(L) or U(L) is bounded Lie Engel.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recall that an associative ring R is said to satisfy the Engel condition (or R is bounded Lie Engel) if R satisfies the identity

$$[x,\underbrace{y,\ldots,y}_n]=0,$$

for some n. It follows from Zel'manov's celebrated result about the restricted Burnside problem [18] that every finitely generated Lie ring satisfying the Engel condition is nilpotent. Kemer in [5] proved that if R is an associative algebra over a field of characteristic zero that satisfies the Engel condition then R is Lie nilpotent. This result was later proved by Zel'manov in [17] for all Lie algebras. However these results fail in positive characteristic, see [16,10]. Nevertheless, Shalev in [12] proved that every finitely generated associative algebra over a field of characteristic p > 0 satisfying the Engel condition is Lie nilpotent. This result was further strengthened by Riley and Wilson in [9] by proving that if R is a d-generated associative C-algebra, where C is a commutative ring, satisfying the Engel condition of degree n, then R is upper Lie

E-mail addresses: salvatore.siciliano@unisalento.it (S. Siciliano), usefi@mun.ca (H. Usefi).

^{*} Corresponding author.

 $^{^{\}rm 1}$ The research of the second author was supported by NSERC Discovery grant RGPIN 418201.

nilpotent of class bounded by a function that depends only on d and n. Hence, in the positive characteristic case one would need to assume that R is also finitely generated.

Let $L = L_0 \oplus L_1$ be a Lie superalgebra over a field \mathbb{F} of characteristic $p \neq 2$ with bracket (,). The adjoint map of $x \in L$ is denoted by ad x. We denote the enveloping algebra of L by U(L). In case p = 3 we add the condition ((y, y), y) = 0, for every $y \in L_1$. This identity is necessary to embed L in U(L).

The Lie bracket of U(L) is denoted by [a,b]=ab-ba, for every $a,b\in U(L)$. We are interested to know when U(L) satisfies the Engel condition. Note that the Engel condition is a non-matrix identity, that is a polynomial identity not satisfied by the algebra $M_2(\mathbb{F})$ of 2×2 matrices over \mathbb{F} . The conditions for which U(L) satisfies a non-matrix identity are given in [2]. It follows from Zel'manov's Theorem [17] that over a field of characteristic zero U(L) satisfies the Engel condition if and only if U(L) is Lie nilpotent. The characterization of L when U(L) is Lie nilpotent over any field of characteristic not 2 is given in [2]. Hence, we have

Corollary 1.1. Let $L = L_0 \oplus L_1$ be a Lie superalgebra over a field of characteristic zero. The following conditions are equivalent:

- (1) U(L) is Lie nilpotent;
- (2) U(L) is bounded Lie Engel;
- (3) L_0 is abelian, L is nilpotent, (L, L) is finite-dimensional, and either $(L_1, L_1) = 0$ or dim $L_1 \le 1$ and $(L_0, L_1) = 0$.

However this result is no longer true in positive characteristic as our following theorem shows (see also Example 2.5).

Theorem 1.2. Let $L = L_0 \oplus L_1$ be a Lie superalgebra over a field of characteristic $p \geq 3$. The following conditions are equivalent:

- (1) U(L) is bounded Lie Engel;
- (2) U(L) is PI, L_0 is abelian, ad x is nilpotent for every $x \in L_0$, and either $(L_1, L_1) = 0$ or dim $L_1 \le 1$ and $(L_0, L_1) = 0$;
- (3) U(L) is PI, L_0 is abelian, L is nilpotent, and either $(L_1, L_1) = 0$ or dim $L_1 \le 1$ and $(L_0, L_1) = 0$.

Note that the above theorem does not follow from Zel'manov or Riley and Wilson's results because U(L) is not necessarily finitely generated.

Now let $L = L_0 \oplus L_1$ be a restricted Lie superalgebra over a field of characteristic p > 2 with enveloping algebra u(L). In our next result we characterize L for which u(L) satisfies the Engel condition. Our results complement the results of [14,15] where it is determined when u(L) satisfies a non-matrix identity or when u(L) is Lie solvable, Lie nilpotent, or Lie super-nilpotent. Similar results for group rings and enveloping algebras of restricted Lie algebras were carried out in [3,6,8], respectively.

Theorem 1.3. Let $L = L_0 \oplus L_1$ be a restricted Lie superalgebra over a field of characteristic p > 2. The following conditions are equivalent:

- (1) u(L) is bounded Lie Engel;
- (2) u(L) is PI, (L_0, L_0) is p-nilpotent, there exists an integer n such that $(ad x)^n = 0$ for every $x \in L_0$, and either (L_1, L_1) is p-nilpotent or dim $L_1 \le 1$ and $(L_1, L_0) = 0$;
- (3) u(L) is PI, L is nilpotent, (L_0, L_0) is p-nilpotent, and either (L_1, L_1) is p-nilpotent or dim $L_1 \leq 1$ and $(L_1, L_0) = 0$.

Download English Version:

https://daneshyari.com/en/article/4596170

Download Persian Version:

https://daneshyari.com/article/4596170

Daneshyari.com