
The Journal of Systems and Software 91 (2014) 85–99

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

End-user development by application-domain configuration

Alistair Sutcliffea,∗, George Papamargaritisb

a Manchester Business School, University of Manchester, Booth Street West, Manchester M15 6PB, UK
b Intracom IT Services, Markopolou Avenue, Athens GR 19002, Greece

a r t i c l e i n f o

Article history:
Received 8 February 2013
Received in revised form 7 October 2013
Accepted 30 November 2013
Available online 8 January 2014

Keywords:
End-user development
Application generation
Domain-oriented design

a b s t r a c t

An application generator/tailoring tool aimed at end users is described. It employs conceptual models of
problem domains to drive configuration of an application generator suitable for a related set of applica-
tions, such as reservation and resource allocation. The tool supports a two-phase approach of configuring
the general architecture for a domain, such as reservation-booking problems, then customisation and
generation of specific applications. The tool also provides customisable natural language-style queries
for spatial and temporal terms. Development and use of the tool to generate two applications, service
engineer call allocation, and airline seat reservation, are reported with a specification exercise to configure
the generic architecture to a new problem domain for monitoring-sensing applications. The application
generator/tailoring tool is evaluated with novice end users and experts to demonstrate its effectiveness.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

End-user software development is receiving increasing atten-
tion as the number of end users practising software development
is predicted to rise (Ko et al., 2011). While tools to generate
user interfaces, such as screen painters and report writers, are
familiar facilities for end users, creation of software applica-
tions has remained in the realm of expert programmers. More
advanced end-user development (EUD) tools have ranged from
visual programming languages to enhanced spreadsheets and
graphical design environments (Fischer, 1994). Another approach
(Repenning and Ioannidou, 2004) has been to facilitate end-user
development of interactive simulations with rule-driven agents.
While these tools can help end users to develop educational and
entertainment-oriented applications, they do not appear to scale
to business domains or complex software engineering problems.
While some genres of domain-specific tools with programmable
scripting languages have been successful, notably spreadsheet
(Burnett, 2009) and database (SQL) programming (Batory and
Geraci, 1997), end users in most domains still have to learn con-
ventional programming languages.

Model-driven architectures have produced a range of tools
which could potentially empower EUD. However, these tools (e.g.
executable UML: Mellor and Balcer, 2002) rely on expert knowledge
for specification in semi-formal notations and an action specifica-
tion language for procedural detail. Action specification languages

∗ Corresponding author. Tel.: +44 0161 306 3315.
E-mail addresses: ags@manchester.ac.uk, ags@man.ac.uk (A. Sutcliffe),

George.Papamargaritis@intracom-it.com (G. Papamargaritis).

follow the syntax and semantics of conventional programming lan-
guages and present a considerable barrier for end users (Ko et al.,
2011). Similar problems are encountered with component-based
software engineering, where glue code has to be written to interface
components, or components have to be customised with a scripting
language, as in ERPs (Keller and Teufel, 1998).

EUD has been defined as “a set of methods, techniques, and
tools that allow users of software systems, who are acting as non-
professional software developers, at some point to create, modify,
or extend a software artifact” (Lieberman et al., 2006). However, the
boundary between language-oriented development (Batory et al.,
2002; Myers et al., 2004) and customising, configuring (Eagan and
Stasko, 2008), and tailoring (Pipek and Kahler, 2006) software is
blurred, where the latter tend to involve parameterisation of exist-
ing programmes, rather than direct modification of a program’s
source code. In this paper we describe application generation and
tailoring with an end-user interface that does not require any spe-
cialist knowledge of programming concepts. We therefore describe
our EUD approach as an application generator-tailoring tool.

In contrast to end-user programming and end-user software
engineering (Burnett, 2009; Ko et al., 2011) we aim to hide
the complexities of programming and scripting from the users,
and instead facilitate application development via user-friendly
graphical interfaces. Question and answer dialogues with form fill-
ing are used to capture user requirements in two phases, first
by customising a generic architecture with components selected
from related domains; then end-user requirements are expressed
directly in a dialogue with the generated application. We explore
two approaches to bridge the communication gap in EUD: (a)
use of generic conceptual models of application domains, and (b)
application customisation using diagrams representing real-world

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.11.1121

dx.doi.org/10.1016/j.jss.2013.11.1121
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.11.1121&domain=pdf
mailto:ags@manchester.ac.uk
mailto:ags@man.ac.uk
mailto:George.Papamargaritis@intracom-it.com
dx.doi.org/10.1016/j.jss.2013.11.1121

86 A. Sutcliffe, G. Papamargaritis / The Journal of Systems and Software 91 (2014) 85–99

domains. In following sections we describe related work; the design
and software architecture of an end-user oriented application tail-
oring tool (EATT); its implementation; usability evaluation with
novice end users; and configuration of the architecture to new
domains. The paper concludes with a discussion comparing our
approach with other EUD tools.

2. Related work

End-user development has followed many paths, ranging from
domain-specific high-level languages (Batory et al., 2002; Freeman,
1987; Neighbors, 1984) to high-level domain-oriented design envi-
ronments (DODEs) (Fischer, 1994) that take a reuse component
configuration approach; and hybrid environments composed of
graphical objects, simple rule scripting and interaction to specify
programmes (Lieberman et al., 2006; Repenning and Ioannidou,
2004; Ioannidou et al., 2009).

EUD via domain-specific languages was supported by high-level
compilers or application generators, such as Draco (Freeman, 1987;
Neighbors, 1984), that produced applications by enabling design-
ers to create domain-tailored specification languages which could
then be used to generate software systems within the same domain.
The reusable Draco domains consisted of an abstract language
containing objects and functions with alternative implementation
routes, and a transformation engine to select optimal implementa-
tions. However, the scope of Draco was limited by the hierarchy of
implemented domain languages and mappings to executable com-
ponents. KIDS (Smith, 1990) generated applications from formal
specification of functions and high-level transformations. High-
level requirements were expressed in a set-theoretic formalism
which required programming expertise.

GenVoca (Batory and Geraci, 1997; Batory et al., 2000, 2002)
used domain analysis to specify a grammar consisting of realms
and components, which was used to generate libraries of data
structures, databases and graphical components. Realms mod-
elled the problem, organising systems into parameterised layers.
Components implemented alternative functional refinements, so
the generator configured a multi-layer architecture by extend-
ing component templates where extensions of components were
formulated as type equations. This required adoption of a template-
based programming style (Batory et al., 2000) which excludes end
users, who have to understand the syntax and semantics of the
GenVoca grammar.

Restricted natural language has been advocated as one way of
escaping from the formal language trap for end users. The unified
approach (Zhisheng et al., 2002) supported a query-based approach
to application generation. End users submitted their requests for
new applications as queries, using an SQL-like natural language
which combined a domain-specific sub-language for expressing
requirements (e.g. banking) and quality of service constraints (e.g.
end-to-end delay, throughput). However, reuse was limited since a
new domain-specific sub-language had to be constructed for each
application.

A similar approach used a question–answer (QA) agent (Yoshida
et al., 2004) to capture the user requirements and translate them
into abstract classes and generation rules. The QA agent matched
the users’ answers to design rules that generated specific appli-
cations from a product-line component library. Although the
QA interface was natural language-based it assumed knowledge
of a formal domain ontology. Explore/L (Markus and Fromherz,
1994) provided a natural language interface with a restricted
vocabulary and syntax consisting of simple declarative sentences
(i.e. subject–verb–object) for expressing requirements. Although
the templates for expressing classes of requirements were gen-
eral they had to be customised with a semantic lexicon of the

domain, and interpreters developed to map user requirements to
components for application generation. Furthermore, the range of
requirements expressions was limited by the set of templates and
interpreters provided.

More recently, service-oriented EUD approaches have proposed
domain-specific languages for e-government services (Fogli and
Parasiliti Provenza, 2012) and navigation with location-based ser-
vices in mobile applications (Stav et al., 2013). While the domain
languages and form-filling menu-driven interfaces of these systems
are more end-user friendly, they do rely on domain experts to spec-
ify domain components and configure development environments
for end-user customisation in relatively restricted domains. Gen-
eral EUD environments based on task-tree diagram specifications
have also been produced for customising service applications for
web and mobile platforms (Paternò et al., 2011); a case study for
genres of reservation applications is reported. Similarly, EUD lan-
guages and customisation support for a reservation/allocation task
based on design patterns has been proposed by Seffah and Ashraf
(2007). While these systems enable relatively easy development
by menu/diagram-based interfaces, they do rely on extensive, prior
configuration by domain experts or service component developers.

Spreadsheets as an exemplar end-user tool have been exten-
sively researched by Burnett et al. (2002), whose aim was to
improve the correctness of user-generated script by algorithms
that detected user errors from their interaction with spreadsheets.
This approach is limited to configuration and validation of spread-
sheets, rather than a wider range of applications. Domain-oriented
design environments (DODEs: Fischer, 1994; Fischer et al., 2004)
eliminate the need for high-level languages by taking a compo-
nent tailoring and reuse approach. Components and design patterns
are represented in graphical forms mapped to the domain, then
end-user development is supported by explanation facilities and
critics which guide the users’ tailoring activities. Fischer argues
that the DODE concept transcends end-user development towards
‘meta design’ where the user is engaged in a domain-oriented
design activity, insulated from coding and computational seman-
tics (Fischer et al., 2009). However, DODEs do require configuration
with components and knowledge within a restricted range of appli-
cations (or a domain) in a seeding cycle (Fischer, 1998).

Graphical EUD environments generally require less specialist
programming knowledge from end users, since they reply on inter-
action with graphical objects to specify computation semantics
(Lieberman et al., 2006). A wide variety of notations (e.g. entity
relationship, data flow, flowchart diagrams) have been proposed for
graphical EUD as well as domain specific notations for CAD (com-
puter aided design) environments (Hale et al., 2012). Graphical EUD
has been based on agent-based paradigms and graphic templates
for constructing rules (Repenning and Ioannidou, 2004), while
Myers et al. (2004) made extensive use of graphical metaphors
to suggest natural programming concepts (ALICE). End users cre-
ate and designate graphical objects with editors and then produce
behaviour by a combination of rule-based specification and user
interface manipulations from which the environment infers rules,
as ‘programming by example’ However, these agent rule-based
programming environments have mainly been targeted at educa-
tional applications, games and applications where physical objects
are present. The graphical approach may be more difficult to
apply to information systems that involve transactions with virtual
objects.

Although previous research has moved some way towards end-
user development tools which hide programming from end users,
there is a contrast between application generators that span a
wide range of applications but employ either restricted natural
language or formal specification languages; and graphical EUD
environments which have concentrated on education and games-
style environments. The challenge we address is to preserve the

Download English Version:

https://daneshyari.com/en/article/459618

Download Persian Version:

https://daneshyari.com/article/459618

Daneshyari.com

https://daneshyari.com/en/article/459618
https://daneshyari.com/article/459618
https://daneshyari.com

