
The Journal of Systems and Software 91 (2014) 109–123

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

A methodology to automatically optimize dynamic memory
managers applying grammatical evolution

José L. Risco-Martína,∗, J. Manuel Colmenarb, J. Ignacio Hidalgoa,
Juan Lancharesa, Josefa Díazc

a Department of Computer Architecture and Automation, Universidad Complutense de Madrid, 28040 Madrid, Spain
b C.E.S. Felipe II, Universidad Complutense de Madrid, 28300 Aranjuez, Spain
c C.U. Mérida, Universidad de Extremadura, 06800 Mérida, Spain

a r t i c l e i n f o

Article history:
Received 11 February 2013
Received in revised form 17 July 2013
Accepted 14 December 2013
Available online 8 January 2014

Keywords:
Genetic programming
Dynamic memory manager
Multi-objective optimization

a b s t r a c t

Modern consumer devices must execute multimedia applications that exhibit high resource utilization.
In order to efficiently execute these applications, the dynamic memory subsystem needs to be opti-
mized. This complex task can be tackled in two complementary ways: optimizing the application source
code or designing custom dynamic memory management mechanisms. Currently, the first approach has
been well established, and several automatic methodologies have been proposed. Regarding the second
approach, software engineers often write custom dynamic memory managers from scratch, which is a dif-
ficult and error-prone work. This paper presents a novel way to automatically generate custom dynamic
memory managers optimizing both performance and memory usage of the target application. The design
space is pruned using grammatical evolution converging to the best dynamic memory manager imple-
mentation for the target application. Our methodology achieves important improvements (62.55% and
30.62% better on average in performance and memory usage, respectively) when its results are compared
to five different general-purpose dynamic memory managers.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, multimedia applications are mostly developed using
C++. This kind of software programs tends to make intensive use of
dynamic memory due to their inherent data management. How-
ever, in C++, dynamic memory is allocated via the operator new()
and deallocated by the operator delete(), which are mapped
directly to the malloc() and free() functions of the standard C
library in most compilers. Therefore, the creation and destruction of
objects is managed by a general-purpose memory allocator, which
may provide good runtime and low memory usage for a wide range
of applications (Johnstone and Wilson, 1999; Lea, 2010).

However, using specialized Dynamic Memory Managers (DMMs)
that take advantage of application-specific behavior can dramat-
ically improve application performance (Barrett and Zorn, 1993;
Grunwald and Zorn, 1993). In this regard, three out of the twelve
integer benchmarks included in SPEC (parser, gcc, and vpr (SPEC,
2013)) and several server applications, use one or more custom
DMMs (Berger et al., 2001).

On the one hand, studies have shown that dynamic memory
management can consume up to 38% of the execution time in

∗ Corresponding author. Tel.: +34 3947603.
E-mail address: jlrisco@dacya.ucm.es (J.L. Risco-Martín).

C++applications (Calder et al., 1995). Thus, the performance of
dynamic memory management can have a substantial effect on
the overall performance of C++applications. On the other hand,
new multimedia devices must rely on dynamic memory for a very
significant part of their functionality due to the inherent unpre-
dictability of the input data. These devices also integrate multiple
services such as multimedia and wireless network communica-
tions, which also compete for memory space. Then, the dynamic
memory management influences the global memory usage of the
system (Atienza et al., 2006b). Finally, energy consumption has
become a real issue in overall system design due to circuit relia-
bility and packaging costs (Vijaykrishnan et al., 2003). However, it
has been recently proved that the DMM consumes only a 1% of the
total enery consumption by the memory subsystem usually in the
execution of a given application (Díaz et al., 2011). Thus, the energy
consumption by the DMM is not relevant on this case and the opti-
mization of the dynamic memory subsystem has two goals that
cannot be seen independently: performance and memory usage.
There cannot exist a memory allocator that delivers the best per-
formance and least memory usage for all programs. However, a
custom memory allocator that works best for a particular program
can be developed using grammatical evolution (Risco-Martin et al.,
2009).

To reach higher performance, programmers often write their
own ad hoc custom memory allocators as macros or monolithic

0164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.12.044

dx.doi.org/10.1016/j.jss.2013.12.044
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.12.044&domain=pdf
mailto:jlrisco@dacya.ucm.es
dx.doi.org/10.1016/j.jss.2013.12.044

110 J.L. Risco-Martín et al. / The Journal of Systems and Software 91 (2014) 109–123

Profiling
report(binaries)

Application

PIN−tool

Run

(a) Profiling of the application

Grammar
generator

Profiling
report

Grammar

(b) Grammar generation

Profiling
report

Grammar
+

Optimized
DMM

rotalumiSAEG
Fitness(j)

DMM(j)

Grammatical
Evolution Algorithm

(GEA)
+

Simulator

(c) Optimization

Fig. 1. DMMs optimization flow. In the first phase, we generate an initial profiling of the de/allocation pattern. In the second phase, we automatically analyze the profiling
report to generate the final grammar. Finally, in the third phase an exploration of the design space of DMMs implementation is performed using GE.

functions in order to avoid function call overhead. This approach,
implemented to improve application performance, is enshrined in
the best practices of skilled computer programmers (Meyers, 1995).
Nonetheless, this kind of code is brittle and hard to maintain or
reuse, and as the application evolves, it can be difficult to adapt the
memory allocator as the application requirements vary. Moreover,
writing these memory allocators is both error-prone and difficult.
Indeed custom and efficient memory allocators are complicated
pieces of software that require a substantial engineering effort.

In this work, we have developed a framework based on gram-
matical evolution to automatically design optimized DMMs for a
target application, minimizing memory usage and maximizing per-
formance. Fig. 1 depicts the optimization process. First, as Fig. 1(a)
shows, we run the application under study together with an instru-
mentation tool, which logs all the required information into an
external file: identification of the object created/deleted, opera-
tion (allocation or deallocation) object size in bytes and memory
address. Since all the DMM exploration process is performed simu-
lating the generated DMMs with the profiling report, this task must
be done just once. In the following phase, as Fig. 1(b) shows, we
automatically examine all the information contained in the profil-
ing report, obtaining a specialized grammar for the target system.
As a result, some incomplete rules in the original grammar (see Sec-
tion 5), such as the different block sizes, are automatically defined
according to the obtained profiling. To this end, we have developed
a tool called Grammar Generator. The last phase is the optimization
process. As Fig. 1(c) depicts, this phase consists of a Grammatical
Evolution Algorithm (GEA) that takes the grammar generated in the
previous phase and the profiling report of the application as inputs.
GEA is supported by a DMM simulator that tests the behavior of
every DMM generated by the grammar applied to the application.
Our GEA is constantly generating different DMM implementations
from the grammar file. When a DMM is generated (DMM(j) in
Fig. 1(c)), it is received by the DMM simulator. Then, the simulator
emulates the behavior of the application, debugging every line in
the profiling report. Such emulation does not de/allocate memory
from the computer like the real application, but maintains useful
information about how the structure of the selected DMM evolves
in time. After the profiling report has been simulated, the DMM
simulator returns back the fitness of the current DMM to the GEA.

The fitness is computed as a weighted sum of the performance and
memory usage by the proposed DMM for the target device and
application under study. Finally, the DMM with lowest fitness is
returned as solution (optimized DMM).

The rest of the paper is organized as follows. First, Section 2
describes some recent advances in the area of DMMs. Next,
Section 3 defines the design space of memory allocators. Then,
Section 4 details the design and implementation of the DMM sim-
ulator, as well as some configuration examples. Section 5 details
how grammatical evolution is applied to the DMM optimization.
Section 6 shows our experimental methodology, presenting the six
benchmarks selected, whereas Section 7 shows the results for these
benchmarks. Finally, Section 8 draws conclusions and future work.

2. Related work

Several approaches have been presented in the last decade to
design flexible and efficient infrastructures for building custom and
general-purpose memory allocators (Berger et al., 2001; Atienza
et al., 2006b,a). All the proposed methodologies are based on
high-level programming where C++templates and object-oriented
programming techniques are used. They allow the software engi-
neer to compose both general-purpose and custom memory
allocator mechanisms. The aforementioned methodologies enable
the implementation of custom DMMs from their basic parts (e.g.,
de/allocation strategies, order within pools, splitting, coalesc-
ing, etc.). In addition, Atienza et al. (2006b) and Atienza et al.
(2006a) provided a way to evaluate the memory usage and energy
consumption, but at system-level. However, all the previously men-
tioned approaches require the execution of the target application
to evaluate every candidate custom DMM, which is a very time-
consuming task, especially if the target application requires human
inputs (like video games). In this regard, Lo et al. (2004) and Teng
et al. (2008) presented two DMM design frameworks that allow
the definition of multiple memory regions with different disci-
plines. However, these approaches are limited to a small set of
user-defined functions for memory de/allocation. Furthermore, the
selection of the “best” DMM is based on a set of predefined rules and
mono-objective search, respectively. Thus, new multi-objective

Download English Version:

https://daneshyari.com/en/article/459620

Download Persian Version:

https://daneshyari.com/article/459620

Daneshyari.com

https://daneshyari.com/en/article/459620
https://daneshyari.com/article/459620
https://daneshyari.com

