
The Journal of Systems and Software 91 (2014) 147–162

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Predictable integration and reuse of executable real-time components

Rafia Inam ∗, Jan Carlson, Mikael Sjödin, Jiří Kunčar
Mälardalen Real-Time Research Centre, Mälardalen University, Box 883, Västerås, Sweden

a r t i c l e i n f o

Article history:
Received 15 May 2013
Received in revised form
19 November 2013
Accepted 23 December 2013
Available online 4 January 2014

Keywords:
Real-time components’ integration
Component reuse
Hierarchical scheduling

a b s t r a c t

We present the concept of runnable virtual node (RVN) as a means to achieve predictable integra-
tion and reuse of executable real-time components in embedded systems. A runnable virtual node is
a coarse-grained software component that provides functional and temporal isolation with respect to
its environment. Its interaction with the environment is bounded both by a functional and a tempo-
ral interface, and the validity of its internal temporal behaviour is preserved when integrated with
other components or when reused in a new environment. Our realization of RVN exploits the latest
techniques for hierarchical scheduling to achieve temporal isolation, and the principles from component-
based software-engineering to achieve functional isolation. It uses a two-level deployment process, i.e.
deploying functional entities to RVNs and then deploying RVNs to physical nodes, and thus also gives
development benefits with respect to composability, system integration, testing, and validation. In addi-
tion, we have implemented a server-based inter-RVN communication strategy to not only support the
predictable integration and reuse properties of RVNs by keeping the communication code in a separate
server, but also increasing the maintainability and flexibility to change the communication code without
affecting the timing properties of RVNs. We have applied our approach to a case study, implemented
in the ProCom component technology executing on top of a FreeRTOS-based hierarchical scheduling
framework and present the results as a proof-of-concept.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we target development of the large class of embed-
ded systems which is required to perform multiple simultaneous
control-functions with real-time requirements. From the develop-
ment point of view, it often makes sense to develop the different
control-functions as separate software-components (Crnkovic and
Larsson, 2002). Typically, these components are first developed and
tested in isolation, and later integrated to form the final software
for the system. Furthermore, many industrial systems are devel-
oped in an evolutionary fashion, reusing components from previous
versions or from related products. It means that the reused com-
ponents are re-integrated in new environments.

Temporal behaviour of real-time software components poses
difficulties in their integration. When multiple software compo-
nents are deployed on the same hardware node, the emerging
timing behaviour of each of the components is typically unpre-
dictable. For example, the temporal behaviour of two components
C1 and C2 and their tasks execution is depicted in Fig. 1, where the

∗ Corresponding author. Tel.: +46 21 103196.
E-mail addresses: rafia.inam@mdh.se, rafia.inaam@gmail.com

(R. Inam), jan.carlson@mdh.se (J. Carlson), mikael.sjodin@mdh.se (M. Sjödin),
jiri.kuncar@gmail.com (J. Kunčar).

horizontal axis represents time, an arrow represents task arrival
and a filled rectangle shows task execution. The temporal behaviour
of both components is tested to be correct during unit testing and
all tasks of both components meet their deadlines when executed
separately before integration as obvious from Fig. 1(a). However,
upon their integration, tasks of one component affect the sched-
uling of tasks of other components and as a result task C1T2 misses
its deadline at time 20 in Fig. 1(b). This means that for an embed-
ded system with real-time constraints; a component that is found
correct during unit testing may fail due to a change in temporal
behaviour when integrated in a system. Even if a new component
is still operating correctly in the system, the integration could cause
a previously integrated (and correctly operating) component to fail.
Similarly, the temporal behaviour of a component is altered if the
component is reused in a new system. Since this alteration is unpre-
dictable as well, a previously correct component may fail when
reused.

In this paper we focus on the schedulability of tasks, i.e. meet-
ing their deadlines, as the main timing property. An RVN’s timing
behaviour is predictable during its integration and reuse, as long as
the schedulability of tasks that have been validated during its devel-
opment within a component is guaranteed when components are
integrated together.

In the real-time community, Hierarchical Scheduling Framework
(HSF) (Deng and Liu, 1997) is known as a technique for solving this

0164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.12.040

dx.doi.org/10.1016/j.jss.2013.12.040
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.12.040&domain=pdf
mailto:rafia.inam@mdh.se
mailto:rafia.inaam@gmail.com
mailto:jan.carlson@mdh.se
mailto:mikael.sjodin@mdh.se
mailto:jiri.kuncar@gmail.com
dx.doi.org/10.1016/j.jss.2013.12.040

148 R. Inam et al. / The Journal of Systems and Software 91 (2014) 147–162

Fig. 1. Schedulability problem during components’ integration: (a) tasks’ execution within separate components and (b) tasks’ execution after components’ integration.

predictability problem by providing temporal isolation between
components. It supports CPU time sharing among components or
applications (means leveraging the CPU-time partitioning from
task-level to the component-level by executing each component
in a separate server), hence isolating components’ functionality
from each other for, e.g., temporal fault containment, compositional
verification, and unit testing. HSF has been proposed to develop
complex real-time systems by enabling temporal isolation and pre-
dictable integration of software-functions (Nolte, 2011).

We address the challenges of preserving the timing properties
within components and to apply these properties during compo-
nents’ integration. We propose the concept of a runnable virtual
node (RVN), in which we integrate HSF within a component tech-
nology for embedded real-time systems; to realize our ideas of
guaranteeing temporal properties of real-time components, their
predictable integrations and reusability. An RVN represents the
functionality of software-component (or a set of integrated compo-
nents) combined with allocated timing resources and a real-time
scheduler to be executed as a server in the HSF. It introduces an
intermediate level between the functional entities and the physical
nodes. Thereby it leads to a two-level deployment process instead of a
single big-stepped deployment; i.e. deploying functional entities to
the virtual nodes in a first-step, and then, deploying multiple virtual
nodes to the physical node (target hardware) in a second-step.

An important feature during component integration is to
provide communication among various components of a target
software system. This communication should also be predictable in
case of real-time components and do not affect the schedulability
of tasks. We implement a communication strategy that enables to
execute the communication code independently from RVNs hence
making the RVNs integration predictable, since communication
time will not affect the schedulability of RVNs’ tasks.

The main contributions of this paper are:

• We realize the concept of runnable virtual nodes for the ProCom
component technology (Sentilles et al., 2008) by exploiting the
HSF implementation (Inam et al., 2011). The purpose is to make
the integration of real-time components predictable, and to ease
the component’s reuse in the new systems.

• We introduce a two-level deployment process instead of a single
big deployment. The two-level process gives development ben-
efits with respect to composability, system integration, testing,
validation and certification. Further it leverages the hierarchical
scheduling to preserve the validity of an RVN’s internal tempo-
ral behaviour when integrated with other components or when
reused in a new environment.

• We implement a communication strategy that supports the pre-
dictable integration and reuse of runnable entities. We evaluate
this strategy against a direct strategy for efficiency and reusability

aspects of RVN. We develop an analysis tool End-to-End Latency
Analyzer for ProCom (EELAP) (Kunčar et al., 2013; Kunčar, 2013) to
compute the end-to-end latencies of both communication strate-
gies/or to evaluate both communication strategies.

• We provide a case study as a proof-of-concept of our approach:
we implement it using the ProCom component technology and
execute it on a real hardware an AVR 32-bit microcontroller (EVK,
2013). We demonstrate the runnable virtual node’s properties with
respect to temporal isolation and reusability.

Once the RVN is assigned for timing properties, it will preserve
these properties without regard of other RVNs it is integrated with
on the same physical node. Our realization allows predictable coex-
istence of virtual nodes that have been either constructed with
different development methodologies or constructed using the
same development technology but having different timing prop-
erties. E.g., a ProCom-RVN can co-exist with an RVN with legacy
FreeRTOS-tasks, or an RVN with hard real-time components that
has been verified with formal methods can co-exist with an RVN
with components without real-time requirements and that has not
undergone extensive validation.

The RVN discussed in this paper is the extension of our previ-
ous work on the concept of virtual node in (Inam et al., 2012a) and
the initial implementation in (Inam et al., 2012b): both papers are
based on the idea of a real-time component that preserves its timing
properties when integrated with other components on a physical
platform. The work described in this paper is the extension of the
initial implementation of the concept of the RVN component, and
the synthesis of the final executables with the emphasis on using
a two-step deployment process. The previous work of (Inam et al.,
2012a), on the other hand, focused on just the presentation of the
general idea of virtual node as a real-time component at a high
level of abstraction and described inclusion of virtual nodes within
different components technologies like AUTOSAR, AADL, and Pro-
Com. It did not address the synthesis process and lacked a practical
implementation.

The previous work of (Inam et al., 2012b) only presented the
initial RVN implementation for components integration, and the
evaluation of predictable integration of real-time components
using a case study on cruise controller system and its execution
in ProCom component model on the AVR-based board EVK1100
(EVK, 2013). In this paper we extend the implementation to
incorporate the reuse of real-time components along with their tim-
ing properties and discuss how the two-level deployment helps
accomplishing the predictable coexistence of real-time compo-
nents together and facilitate their reuse. We also evaluate the reuse
property of RVN by extending the previous case study with the
new functionality of the adaptive cruise controller system and

Download	English	Version:

https://daneshyari.com/en/article/459623

Download	Persian	Version:

https://daneshyari.com/article/459623

Daneshyari.com

https://daneshyari.com/en/article/459623
https://daneshyari.com/article/459623
https://daneshyari.com/

