

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Double coset algebras

Robert May

Department of Mathematics and Computer Science, Longwood University, 201 High Street, Farmville, VA 23909, United States

ARTICLE INFO

Article history: Received 22 July 2013 Received in revised form 17 February 2014 Available online 20 March 2014 Communicated by C. Kassel

MSC: 16S99; 20C08; 20M25

ABSTRACT

For a finite monoid M with unit e and an indexed family $\mathbf{G} = \{G_i \colon i \in I\}$ of subgroups of the group G(M) of invertible elements in M, the complex vector space $A(M,\mathbf{G})$ with basis the double cosets of the form G_imG_j , $m \in M$, has a natural multiplication yielding an associative \mathbb{C} -algebra which we call a double coset algebra. We construct two \mathbb{Z} -algebras with identity, $LGS(M,\mathbf{G})$ and $RGS(M,\mathbf{G})$, called the left and right generalized Schur algebras, which as \mathbb{Z} -modules are free with basis the double cosets. When M is the symmetric group \mathfrak{S}_r and \mathbf{G} is the family of Young subgroups indexed by compositions of r with at most n parts, $A(M,\mathbf{G})$ is isomorphic to the usual Schur algebra S(n,r) and $LGS(M,\mathbf{G})$ corresponds to its standard \mathbb{Z} -form.

The structure constants we derive for these algebras provide multiplication rules useful for further analysis of the generalized Schur algebras. Our main result is then the observation that $LGS(M, \mathbf{G})$ and $RGS(M, \mathbf{G})$ are always \mathbb{Z} -forms for $A(M, \mathbf{G})$, that is, $A(M, \mathbf{G}) \cong \mathbb{C} \otimes_{\mathbb{Z}} LGS(M, \mathbf{G}) \cong \mathbb{C} \otimes_{\mathbb{Z}} RGS(M, \mathbf{G})$.

The Iwahori–Hecke algebra H(M,G) corresponding to a finite monoid M and subgroup G is isomorphic to the double coset algebra $A(M,\mathbf{G})$ where $\mathbf{G}=\{G\}$ consists of a single set. So, as a special case of our result, we obtain \mathbb{Z} -forms $LGS(M,\mathbf{G})$ and $RGS(M,\mathbf{G})$ for arbitrary Iwahori–Hecke algebras. The existence of a \mathbb{Z} -form for any such H(M,G) appears to be a new result.

 $\ensuremath{{}^{\odot}}$ 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a finite monoid M with unit e and an indexed family $\mathbf{G} = \{G_i : i \in I\}$ of subgroups of the group G(M) of invertible elements in M consider the complex vector space $A(M, \mathbf{G})$ with basis the double cosets of the form $G_i m G_j$, $m \in M$. There is a natural multiplication on $A(M, \mathbf{G})$ yielding an associative \mathbb{C} -algebra which we call a double coset algebra. We also construct two \mathbb{Z} -algebras with identity, $LGS(M, \mathbf{G})$ and $RGS(M, \mathbf{G})$, which we call left and right generalized Schur algebras. As \mathbb{Z} -modules, these are free with basis the double cosets. When M is the symmetric group \mathfrak{S}_r or the full transformation semigroup τ_r and \mathbf{G} is the family of Young subgroups indexed by compositions of r with at most n parts, $A(M, \mathbf{G})$ is isomorphic to the

E-mail address: rmay@longwood.edu.

usual Schur algebra S(n,r) or the generalized Schur algebra of [5] and [4]. Then $LGS(M, \mathbf{G})$ corresponds to the known \mathbb{Z} -form for the usual Schur algebra, while $RGS(M, \mathbf{G})$ corresponds to the \mathbb{Z} -form in [4] for a generalized Schur algebra.

We derive structure constants for these algebras, providing useful multiplication rules for the Schur algebras. Our main result is then the observation that $LGS(M, \mathbf{G})$ and $RGS(M, \mathbf{G})$ are always \mathbb{Z} -forms for $A(M, \mathbf{G})$, that is, $A(M, \mathbf{G}) \cong \mathbb{C} \otimes_{\mathbb{Z}} LGS(M, \mathbf{G}) \cong \mathbb{C} \otimes_{\mathbb{Z}} RGS(M, \mathbf{G})$.

The Iwahori–Hecke algebra H(M,G) corresponding to a finite monoid M and subgroup G (see [2,6,7]) is isomorphic to the double coset algebra $A(M,\mathbf{G})$ where $\mathbf{G}=\{G\}$ consists of a single set. So, as a special case of our result, we obtain \mathbb{Z} -forms $LGS(M,\mathbf{G})$ and $RGS(M,\mathbf{G})$ for arbitrary Iwahori–Hecke algebras. When M is itself a group the two \mathbb{Z} -forms are isomorphic and agree with the well-known \mathbb{Z} -form for this case. For general finite monoids M, the two \mathbb{Z} -forms are in general distinct and the existence of a \mathbb{Z} -form for any such H(M,G) appears to be a new result. We remark that the \mathbb{Z} -forms obtained by Solomon in [7] and Godelle in [2] for special cases when $A(M,\mathbf{G})$ is the q-rook algebra or a deformation of the monoid algebra corresponding to a Renner monoid differ from either of our \mathbb{Z} -forms.

2. The standard double coset algebra

Let M be a finite monoid with identity e and $\mathbf{G} = \{G_i : i \in I\}$ be a family of subgroups of the group G(M) of invertible elements in M indexed by a finite set I. (We may have $G_i = G_j$ for distinct indices $i \neq j$.) For each $i, j \in I$ there is an equivalence relation $i \sim_j$ on M, defined by $m_i \sim_j n \Leftrightarrow n = \sigma m \pi$ for some $\sigma \in G_i$, $\pi \in G_j$, for which the equivalence classes are the double cosets of the form $G_i m G_j$, $m \in M$. Let iM_j be the set of such double cosets. Let M_I be the disjoint union of all the sets iM_j , $i, j \in I$. More precisely, $M_I = \{(D, i, j) : i, j \in I, D \in iM_j\}$.

Let $A = \mathbb{C}[M]$ be the monoid algebra over the complex numbers \mathbb{C} and let ${}^{i}A^{j}$ be the subspace of A which is invariant under left multiplication by G_{i} and right multiplication by G_{j} :

$$^{i}A^{j} = \{x \in A : \forall \sigma \in G_{i}, \ \forall \pi \in G_{i}, \ \sigma x\pi = x\}.$$

For any double coset $D \in {}_{i}M_{j}$ define $X(D) = \sum_{m \in D} m \in A$. Evidently $X(D) \in {}^{i}A^{j}$ and a simple calculation shows that $\{X(D): D \in {}_{i}M_{j}\}$ is a basis for the subspace ${}^{i}A^{j} \subseteq \mathbb{C}[M]$. (For example, see [2] for the special case of Iwahori–Hecke algebras.)

Notice that the subspaces ${}^{i}A^{j}$ for distinct indices may have nontrivial intersection or may even coincide. We take disjoint copies of these subspaces and form the direct sum:

$$A(M, \mathbf{G}) \equiv A_I \equiv \bigoplus_{i,j \in I} {}^i A^j.$$

Then the vector space A_I has a basis $\{X(D): (D,i,j) \in M_I\}$ indexed by M_I . More generally, let $r: M_I \to \mathbb{C}^*$ be a scaling function which assigns to each double coset $(D,i,j) \in M_I$ a nonzero value $r(D,i,j) \in \mathbb{C}-\{0\}$. Then the set $\{r(D,i,j)X(D): (D,i,j) \in M_I\}$ forms a basis for A_I . We will write

$$b_r(D, i, j) = r(D, i, j)X(D)$$

for these basis elements.

We wish to make A_I into an associative algebra with identity. The construction is a natural generalization of the special case of Iwahori–Hecke algebras as given in [2]. For $i \in I$ we have $G_i = G_i e G_i \in {}_i M_i$. Then define $e_i = \frac{X(G_i)}{o(G_i)} \in {}^i A^i \subseteq A$, where $o(G_i)$ is the order of the group G_i . It is easy to check that each e_i is an idempotent in A and that ${}^i A^j = e_i A e_j$. We want the idempotents e_i to be orthogonal in A_I which is equivalent to taking x * y = 0 when $x \in {}^i A^j$, $y \in {}^k A^l$ and $j \neq k$. For the case j = k, notice that

Download English Version:

https://daneshyari.com/en/article/4596234

Download Persian Version:

https://daneshyari.com/article/4596234

Daneshyari.com