
Journal of Pure and Applied Algebra 218 (2014) 583–601

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Support varieties for transporter category algebras
Fei Xu
Department of Mathematics, Shantou University, 243 University Road, Shantou, Guangdong 515063, China

a r t i c l e i n f o

Article history:
Received 12 November 2012
Received in revised form 30 May 2013
Available online 1 August 2013
Communicated by D. Nakano

MSC:
Primary: 16E40; 16P40; 20C05; 20J06;
55N25

Secondary: 57S17

a b s t r a c t

Let G be a finite group. Over any finite G-poset P we may define a transporter category
as the corresponding Grothendieck construction. The classifying space of the transporter
category is the Borel construction on the G-space BP , while the k-category algebra of the
transporter category is the (Gorenstein) skew group algebra on the G-algebra kP .

We introduce a support variety theory for the category algebras of transporter cate-
gories. It extends Carlson’s support variety theory on group cohomology rings to equivari-
ant cohomology rings. In the mean time it provides a class of (usually non selfinjective)
algebras to which Snashall–Solberg’s (Hochschild) support variety theory applies. Various
properties will be developed. Particularly we establish a Quillen stratification for modules.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite group and P a finite G-poset. Throughout this paper, we assume that k is an algebraically closed field of
characteristic p, dividing the order ofG.We are interested in a finite categoryG ∝ P , which is the Grothendieck construction
on the G-poset P and which we will call a transporter category in this paper. When G = {e} is trivial, {e} ∝ P ∼= P and
when P = • is trivial, G ∝ • ∼= G. A transporter category G ∝ P is the algebraic or categorical predecessor of the Borel
construction EG×GBP on the finiteG-CW-complex BP , in the sense that B (G ∝ P ) ≃ EG×GBP . Our interests in transporter
categories come from the fact that the equivariant cohomology ring H∗G(BP , k) = H∗(EG×G BP , k) is Noetherian. Through
an algebraic construction of the equivariant cohomology ring, we may introduce in a natural way modules over this ring
and hence extend Carlson’s support variety theory for finite group algebras to one for finite transporter category algebras.

Let us recall some historical developments in support variety theory. Suppose that X is a compactG-space. Quillen [22,23]
proved that H∗G(X) is Noetherian. Following his notation, we put HG(X) to be H∗G(X) if p = 2 or Hev

G (X), the even part of the
equivariant cohomology ring, if p ≥ 3. When X = • is just a point fixed by G, the equivariant ring reduces to the group
cohomology ring andwe shall write H∗G = H∗G(•) andHG = HG(•). Quillen’swork beganwith the observation that the graded
ring HG(X) is commutative Noetherian. It enabled him to define a homogeneous affine variety VG,X as the maximal ideal
spectrumMaxSpec HG(X), and subsequently described it in terms of VE = VE,• = MaxSpec HE , where E runs over the set of
all elementary abelian p-subgroups of G such that XE

≠ ∅. This is what we nowadays refer to as the Quillen stratification.
Restricting to the special case of X = •, based on the fact that Ext∗kG(M,M) is finitely generated over H∗G ∼= Ext∗kG(k, k),
Carlson [11] extended Quillen’s work by attaching to every finitely generated kG-module M a subvariety of VG = VG,•,
denoted by VG(M) = MaxSpec HG/IG(M), called the (cohomological) support variety of M , where IG(M) is the kernel of the
following map

φM = −⊗k M : H∗G ∼= Ext∗kG(k, k)→ Ext∗kG(M,M).

Especially since φk is the identity, VG = VG(k). Following Carlson’s construction, Avrunin and Scott [5] quickly generalized
the Quillen stratification from VG to VG(M). By showing that the support varieties are well-behaved with respect to module
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operations, gradually Benson, Carlson and many others developed a remarkable theory, being a significant progress in
group representations and cohomology. Since then, some other analogous support variety theories have been introduced for
restricted Lie algebras [16], for finite group schemes [6,17], for complete intersections [4] and for certain finite-dimensional
algebras [20,14,24].

Quillen’s work on equivariant cohomology rings has not been fully exploited, partially because there existed no suitable
modules which H∗G(X) (hence HG(X)) acts on or maps to, as in Carlson’s theory. In this article, we attempt to use category
algebras to solve the problem: if X = BP comes from a finite G-poset, then we consider the category algebra k(G ∝ P ) of
the transporter category G ∝ P , based on which we will generalize Carlson’s theory. In fact, let k be the trivial k (G ∝ P )-
module (see Section 2.2). Then Ext∗k (G∝P )(k, k) is a graded commutative ring and there exists a natural ring isomorphism

Ext∗k (G∝P )(k, k) ∼= H∗(EG×G BP , k) = H∗G(BP , k).

We shall call the above ring the ordinary cohomology ring of k (G ∝ P ) (instead of the equivariant cohomology ring), as
opposed to the Hochschild cohomology ring of k (G ∝ P ). Then we define VG∝P = VG,BP = MaxSpec HG(BP ). The virtue of
having an entirely algebraic construction of the equivariant cohomology theory is that it allows us to consider

Ext∗k (G∝P )(M, N)

for any finitely generated M, N ∈ k (G ∝ P )-mod, and moreover construct a map

φM = −⊗̂M : Ext∗k (G∝P )(k, k)→ Ext∗k (G∝P )(M, M).

Here ⊗̂ is the tensor product in the closed symmetric monoidal category (k (G ∝ P )-mod, ⊗̂, k). Note that k serves as the
tensor identity. Since we have shown in [29] that Ext∗k (G∝P )(M, N) is finitely generated over the ordinary cohomology ring,
we may define the support variety of M ∈ k (G ∝ P )-mod as VG∝P (M) = MaxSpec HG(BP )/IG∝P (M), where IG∝P (M) is
the kernel of φM. Especially VG∝P = VG∝P (k). When P = •, the is exactly Carlson’s construction because k(G ∝ •) ∼= kG, k
becomes the trivial kG-module k and ⊗̂ reduces to⊗k under the circumstance.

As a surprising consequence of our investigations of transporter category algebras, we assert that Snashall–Solberg’s
(Hochschild) support variety theory (for Gorenstein algebras) applies to every block of a finite transporter category algebra.
Furthermore, our support variety theory is closely related with Snashall–Solberg’s as what happens in the case of group
algebras and their blocks. A notable point is that the block algebras of a transporter category algebra are usually non-
selfinjective and non-commutative, opposing to the cases of (selfinjective) Hopf algebras [11,6,17] and of commutative
Gorenstein algebras [4] considered by others.

This paper is organized as follows. Section 2 recalls the definitions of the transporter category, the category algebra and
the category cohomology. Various necessary constructions are recorded for the convenience of the reader. Here we show
a transporter category algebra is Gorenstein and the ordinary cohomology ring of such an algebra is identified with an
equivariant cohomology ring. Then in Section 3, we define the support variety for a module over a transporter category
algebra. To motivate the reader, we describe the relevant works of Carlson, Linckelmann and Snashall–Solberg, before we
develop some standard properties. Sections 4 and 5 contain various properties of support varieties, including the Quillen
stratification for modules, as well as results related with sub-transporter categories and tensor products.

2. Preliminaries

In this section, we recall the definition of a transporter category and some background in category algebras. Throughout
this article we will only consider finite categories, in the sense that they have finitely many morphisms. Thus a group G, or
a G-poset P , is always finite.

Themorphisms in a poset are customarily denoted by≤. The dimension of a posetP , dimP , is defined to be themaximal
integer n such that a chain of non-isomorphisms x0 < x1 < · · · < xn exists in P .

Any G-set is usually regarded as a G-poset with trivial relations. One the other hand, since in a G-poset P , both ObP and
MorP are naturally G-sets, we shall use terminologies for G-sets in our situation without further comments.

2.1. Transporter categories as Grothendieck constructions

We deem a group as a category with one object, usually denoted by •. The identity of a group G is always named e. We
say a poset P is a G-poset if there exists a functor F from G to sCats, the category of small categories, such that F(•) = P . It
is equivalent to saying that we have a group homomorphism G→ Aut(P ). The Grothendieck construction on F will be called
a transporter category.

Definition 2.1.1. Let G be a group and P a G-poset. The transporter category G ∝ P has the same objects as P , that is,
Ob(G ∝ P ) = ObP . For x, y ∈ Ob(G ∝ P ), a morphism from x to y is a pair (g, gx ≤ y) for some g ∈ G.

If (g, gx ≤ y) and (h, hy ≤ z) are two morphisms in G ∝ P , then their composite is easily seen to be (hg, (hg)x ≤ z) =
(h, hy ≤ z) ◦ (g, gx ≤ y).
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