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For G a connected, reductive group over an algebraically closed field k of large 
characteristic, we use the canonical Springer isomorphism between the nilpotent 
variety of g := Lie(G) and the unipotent variety of G to study the projective variety 
of elementary subalgebras of g of rank r, denoted E(r, g). In the case that G is 
defined over Fp, we define the category of Fq-expressible subalgebras of g for q = pd, 
and prove that this category is isomorphic to a subcategory of Quillen’s category of 
elementary abelian subgroups of the finite Chevalley group G(Fq). This isomorphism 
of categories leads to a correspondence between G-orbits of E(r, g) defined over Fq

and G-conjugacy classes of certain elementary abelian subgroups of rank rd in G(Fq)
which satisfy a closure property characterized by the Springer isomorphism. We use 
Magma to compute examples for G = GLn, n ≤ 5.

© 2014 Elsevier B.V. All rights reserved.

In [2], J. Carlson, E. Friedlander, and J. Pevtsova initiated the study of E(r, g), the projective variety 
of rank r elementary subalgebras of a restricted Lie algebra g. The authors demonstrate that the study of 
E(r, g) informs the representation theory and cohomology of g. This is all reminiscent of the case of a finite 
group G, where the elementary abelian p-subgroups play a significant role in the story of the representation 
theory and cohomology of G, as first explored by Quillen in [11] and [12].

In this paper, we further explore the structure of E(r, g) and its relationship with elementary abelian 
subgroups. Theorem 3.3 shows in the case that g is the Lie algebra of a connected, reductive group G defined 
over Fp, the category of Fq-expressible subalgebras (Definitions 2.2 and 3.2) is isomorphic to a subcategory 
of Quillen’s category of elementary abelian p-subgroups of G(Fq), where q = pd. Specifically, we introduce 
the notion of an Fq-linear subgroup (Definition 3.5), and we show in Corollary 3.9 that the Fq-expressible 
subalgebras of rank r are in bijection with the Fq-linear elementary abelian subgroups of rank rd in G(Fq). 
This bijection leads to Corollary 3.11, which allows us to compute the largest integer R = R(g) such that 
E(R, g) is non-empty for a simple Lie algebra g. These values are presented in Table 1.
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The results and definitions in Section 3 rely on the canonical Springer isomorphism σ : N (g) → U(G), 
which has been shown to exist under the hypotheses we assume in this paper, as detailed in [13,3,16], and [7]. 
Together with Lang’s theorem, Theorem 3.3 implies Theorem 4.3, which establishes a natural bijection 
between the G-orbits of E(r, g) defined over Fq and the G-conjugacy classes of Fq-linear elementary abelian 
subgroups of rank rd in G(Fq). Example 4.8, due to R. Guralnick, shows that E(r, g) may be an infinite 
union of G-orbits (in fact this is usually the case). However, Proposition 4.4 demonstrates that E(R(g), g) is 
a finite union of orbits for all connected, reductive G such that (G, G) is an almost-direct product of simple 
groups of classical type. We believe that E(R(g), g) is a finite union of orbits for all connected, reductive 
groups, and Proposition 4.4 reduces the verification of this belief to proving a claim about conjugacy classes 
of elementary abelian p-subgroups in G(Fq) for varying d and for exceptional simple groups G. Our interest 
in describing the G-orbits is motivated by the results of §6 in [2], where the authors construct algebraic 
vector bundles on G-orbits of E(r, g) associated to a rational G-module M via the restriction of image, 
cokernel, and kernel sheaves.

Through personal communication with the author, E. Friedlander asked for conditions implying that 
E(r, g) is irreducible. In the case that g = gln, Theorem 5.1 presents certain ordered pairs (r, n) for which 
E(r, g) is irreducible. This theorem relies on previous results concerning the irreducibility of Cr(N (gln)), the 
variety of r-tuples of pair-wise commuting, nilpotent n × n matrices (see [8] for a nice summary of these 
results).

Finally, in Section 6, we compute a few examples for G = GLn. Some of the computations depend 
on Conjecture 6.1, which supposes the dimension of an orbit is related to the size of the corresponding 
G-conjugacy class. Eq. (6.2.1) computes the dimension of E(r, gln) for all (r, n) such that Cr(N (gln)) is 
irreducible, and surprisingly this equation agrees with computations of dim(E(r, gln)) even for ordered pairs 
where Cr(N (gln)) is known to be reducible. Proposition 6.3 computes the dimension of the open orbit 
defined by a regular nilpotent element, as first considered in Proposition 3.19 of [2]. For n ≤ 5, we bound 
the number of G-orbits in E(r, gln) defined over Fq and compute their dimensions.

1. Review and preliminaries

Let k be an algebraically closed field of characteristic p > 0, and let G be a connected, reductive algebraic 
group over k, with Coxeter number h = h(G). Following §2 in [19], we let π = π(G) denote the fundamental 
group of G′ = (G, G). We will often require that p satisfies the following two conditions, which will be 
collectively referred to as condition (�):

(1) p ≥ h, (2) p � |π| (�)

We make three remarks about condition (�). First, (1) implies (2) in all cases except when p = h and G′

has an adjoint component of type A. Second, (2) is equivalent to the separability of the universal cover 
G′

sc → G′ [19, §2.4]. For example, the canonical map SLp → PSLp is not separable in characteristic p, so 
we must exclude the case G = PSLp. Third, (�) implies that p is non-torsion for G (cf. §2 in [9]), which we 
require to use Theorem 2.2 of [9] in our proof of Theorem 1.3.

The unipotent elements of G form an irreducible closed subvariety of G, denoted U(G), and G acts 
by conjugation on U(G). In the Lie algebra setting, the nilpotent elements of g := Lie(G) also form an 
irreducible closed subvariety of g, denoted N (g), and N (g) is a G-variety under the adjoint action of G
on g. The main tool we will use to translate information between the group and Lie algebra settings will be 
a well-behaved Springer isomorphism.

Definition 1.1. A Springer isomorphism is a G-equivariant isomorphism of algebraic varieties σ : N (g) →
U(G).
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