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The radical of a field consists of all nonzero elements that are represented by every
binary quadratic form representing 1. Here, the radical is studied in relation to local–global
principles, and further in its behavior under quadratic field extensions. In particular, an
example of a quadratic field extension is constructed where the natural analogue to the
square-class exact sequence for the radical fails to be exact. This disproves a conjecture of
Kijima and Nishi.
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1. Introduction

Let K be a field of characteristic different from 2. Let K × denote the multiplicative group of K ,
∑

K ×2 the subgroup
of nonzero sums of squares in K , and D K 〈1,a〉 the subgroup of K × consisting of the nonzero elements represented by the
binary quadratic form X2 + aY 2, for any a ∈ K × . The object of study in this article is the subgroup

R(K ) =
⋂

a∈K ×
D K 〈1,a〉

of K × , called the (Kaplansky) radical of K . This object was first studied by I. Kaplansky for fields over which there exists
a unique quaternion division algebra [7]. It was investigated in more generality by C.M. Cordes [4], who baptized it the
Kaplansky radical and observed that in several statements about quadratic forms over K one can replace K ×2 by R(K ). We
refer to [11, Chapter XII, Sections 6 & 7] for an introduction to the Kaplansky radical. By [11, Chapter XII, (6.1)] the radical
is further characterized as R(K ) = {c ∈ K × | D K 〈1,−c〉 = K ×}.

In this article we continue the study of the radical. In Section 2 we consider the position of the radical within the
inclusions K ×2 ⊆ R(K ) ⊆ ∑

K ×2. In Section 3 we study fields satisfying a local–global principle for quadratic forms and
derive a determination of the radical as the set of elements that are locally squares. In Section 4 we revisit the behavior
of the radical under quadratic field extensions and disprove a conjecture by D. Kijima and M. Nishi discussed in [8], [9],
and [6].

2. Position of the radical

We have the inclusions K ×2 ⊆ R(K ) ⊆ D K 〈1,1〉 ⊆ ∑
K ×2. We first consider the two extremal cases for the position of

the radical with respect to these inclusions. We say that K is radical-free if R(K ) = K ×2.

* Corresponding author.
E-mail addresses: becher@maths.ucd.ie (K.J. Becher), leep@email.uky.edu (D.B. Leep).

0022-4049/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jpaa.2013.12.009

http://dx.doi.org/10.1016/j.jpaa.2013.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
mailto:becher@maths.ucd.ie
mailto:leep@email.uky.edu
http://dx.doi.org/10.1016/j.jpaa.2013.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2013.12.009&domain=pdf


1578 K.J. Becher, D.B. Leep / Journal of Pure and Applied Algebra 218 (2014) 1577–1582

Proposition 2.1. Assume that |K ×/K ×2| � 4 and there exists t ∈ K × such that D K 〈1, t〉 = K ×2 ∪ t K ×2 and D K 〈1,−t〉 = K ×2 ∪
−t K ×2 . Then K is radical-free.

Proof. We may choose an element a ∈ K × \ (K ×2 ∪ t K ×2). Then a /∈ D K 〈1, t〉 and thus −t /∈ D K 〈1,−a〉, whereby R(K ) ⊆
D K 〈1,−t〉 ∩ D K 〈1,−a〉 = K ×2. �

By a Z-valuation we mean a valuation with value group Z. For a Z-valuation v on K we denote by K v the corresponding
completion.

Corollary 2.2. Assume that K is henselian with respect to a Z-valuation whose residue field is of characteristic different from 2 and
not quadratically closed. Then K is radical-free.

Proof. It follows from the hypotheses that |K ×/K ×2| � 4. Moreover, any t ∈ K × that has odd value with respect to the
given valuation will be such that D K 〈1, t〉 = K ×2 ∪ t K ×2 and D K 〈1,−t〉 = K ×2 ∪ −t K ×2. Hence, the statement follows
from (2.1). �

By [11, Chapter XII, Section 6], if K is a finite extension of the field of p-adic numbers Qp for a prime number p, then
K is radical-free; for p 	= 2 this can be seen from (2.2).

Proposition 2.3. The following are equivalent:

(i) R(K ) = ∑
K ×2;

(ii) R(K ) = D K 〈1,1〉;
(iii) I2

t K = 0;
(iv) every torsion 2-fold Pfister form over K is hyperbolic.

Proof. This follows from [11, Chapter XI, (4.1) and (4.5)] for n = 2. �
Condition (iv) corresponds to Property (A2) in the terminology of [5], treated also in [11, Chapter XI, Section 4]. Following

[9] we say that the field K is quasi-pythagorean if it satisfies the equivalent conditions in (2.3). By [11, Chapter XI, (6.26)]
this is further equivalent to having that the u-invariant of K is at most 2. For example, by [11, Chapter XI, (4.10)], any
extension of transcendence degree one of a real closed field is quasi-pythagorean.

In [4] Cordes gave an example of a field K with K ×2 � R(K ) �
∑

K ×2 and asked whether one can have such examples
where K ×/K ×2 is finite. M. Kula [10] and L. Berman [3] independently constructed such examples. We give another example
where K is a nonreal algebraic extension of Q having 8 square classes.

Example 2.4. The integers −2,−5 and 7 are squares in Q3. Hence, Q3 contains the field Q(
√−2,

√−5 ). Moreover, 7 is
not a square in Q(

√−2,
√−5 ). Consider the set of subfields of Q3 that are algebraic extensions of Q(

√−2,
√−5 ) and in

which 7 is not a square. By Zorn’s Lemma, we may choose a maximal element K in this set. Then K is a field whose unique
quadratic extension contained in Q3 is K (

√
7 ). As the four square classes of Q3 are represented by 1,2,3 and 6, it follows

that the classes of 2,3,7 form an F2-basis of the square class group K ×/K ×2. In particular |K ×/K ×2| = 8.
As Q×

3 = K ×Q×2
3 we conclude that R(K ) ⊆ R(Q3). As Q3 is radical-free, we obtain that R(K ) ⊆ K × ∩Q×2

3 = K ×2 ∪ 7K ×2.
Since 2 = 32 − 7, 3 = (

√−2 · √−5 )2 − 7 and 2 · 3 · 7 = 72 − 7, we see that D K 〈1,−7〉 = K × . This shows that R(K ) =
K ×2 ∪ 7K ×2.

The number of square classes in (2.4) is minimal for having a nontrivial radical, by the following statement.

Proposition 2.5. If K ×2 � R(K )�
∑

K ×2 then |K ×/K ×2| � 8.

Proof. By [11, Chapter XII, (6.10)], if R(K ) has index two in K × , then K is real and thus R(K ) = ∑
K ×2. Hence, if R(K ) �∑

K ×2 then |K ×/R(K )| � 4. �
3. The radical as the group of local squares

In certain fields satisfying a local–global principle for isotropy of quadratic forms, the radical consists of the elements
that are squares locally.
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