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A ring R is defined to be GWS if abc = 0 implies bac ⊆ N(R) for a,b, c ∈ R , where N(R)

stands for the set of nilpotent elements of R . Since reduced rings and central symmetric
rings are GWS, we study sufficient conditions for GWS rings to be reduced and central
symmetric. We prove that a ring R is GWS if and only if the n×n upper triangular matrices
ring Un(R, R) is GWS for any positive integer n. It is proven that GWS rings are directly
finite and left min-abel. For a GWS ring R , R is a strongly regular ring if and only if R is a
von Neumann regular ring if and only if R is a left SF ring and J (R) = 0; R is an exchange
ring if and only if R is a clean ring. Finally, we show that GWS exchange rings have stable
range 1 and a GWS semiperiodic ring R with N(R) �= J (R) is commutative.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this article, all rings considered are associative with identity, and all modules are unital, the symbols J (R),
N(R), U (R), E(R), Z(R) and Maxl(R) will stand respectively for the Jacobson radical, the set of all nilpotent elements, the
set of all invertible elements, the set of all idempotent elements, the center and the set of all maximal left ideals of R . For
any nonempty subset X of a ring R , r(X) = rR(X) and l(X) = lR(X) denote the right annihilator of X and the left annihilator
of X , respectively.

A ring R is called

(1) reduced if N(R) = 0;
(2) symmetric if abc = 0 implies bac = 0 for a,b, c ∈ R;
(3) Abel if E(R) ⊆ Z(R);
(4) left quasi-duo if every maximal left ideal of R is an ideal;
(5) MELT if every essential maximal left ideal of R is an ideal.

Symmetric rings are defined by Lambek in [10]. In [8], this concept is extended to the central symmetric ring, that is, if
abc = 0 implies bac ∈ Z(R).

A ring R is called generalized weakly symmetric or GWS if abc = 0 implies bac ∈ N(R). In this paper, we show that GWS
rings are a proper generalization of central symmetric rings. Theorem 2.7 shows that a ring R is GWS if and only if the n ×n
upper triangular matrix ring over R is GWS for each n � 1.

Let R be a ring and e ∈ E(R). e is called left minimal idempotent if Re is a minimal left ideal of R . We write M El(R)

for the set of all left minimal idempotents of R . A ring R is called left min-abel if (1 − e)Re = 0 for each e ∈ M El(R).
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In [14, Theorem 1.2], it is shown that a ring R is left quasi-duo if and only if it is a left min-abel MELT ring. The study of
left min-abel rings appears in [14], [16] and [17]. Theorem 2.13 shows that GWS rings are left min-abel.

Following [11], an element a of a ring R is called clean if a is a sum of a unit and an idempotent of R , and a is said to
be exchange if there exists e ∈ E(R) such that e ∈ aR and 1 − e ∈ (1 − a)R . A ring R is called clean if every element of R is
clean, and R is said to be exchange if every element of R is exchange. According to [11], clean rings are always exchange,
but the converse is not true, in general. In [19], it is shown that left quasi-duo exchange rings are clean; In [20], it is shown
that Abel exchange rings are clean; In [16], it is shown that quasi-normal exchange rings are clean; In [17], it is shown that
weakly normal exchange rings are clean. Theorem 4.1 shows that GWS exchange rings are clean.

Following [3], a ring R is said to be semiperiodic if for each x ∈ R\( J (R) ∪ Z(R)), there exist m,n ∈ Z, of opposite parity,
such that xn − xm ∈ N(R). Clearly, the class of semiperiodic rings contains all commutative rings, all Jacobson radical rings,
and certain non-nil periodic rings. In [3], it is shown that reduced semiperiodic rings are commutative. Theorem 5.3 shows
that a GWS semiperiodic ring R with N(R) �= J (R) is commutative.

2. Generalized weakly symmetric rings

Definition 2.1. A ring R is called generalized weakly symmetric (GWS) if for any a,b, c ∈ R , abc = 0 implies bac ∈ N(R).

All commutative rings, reduced rings and symmetric rings are GWS. One may suspect that GWS rings are symmetric. But
the following example erases the possibility.

Example 2.2. Let D be a field and R =
(

D D
0 D

)
. Then R is a GWS ring. But R is not symmetric.

Following [8], a ring R is called central symmetric if for any a,b, c ∈ R , abc = 0 implies bac ∈ Z(R). Clearly, symmetric
rings are central symmetric.

Proposition 2.3. Central symmetric rings are GWS.

Proof. Let R be a central symmetric ring and abc = 0. Then (ab)(cx)1 = 0 and (ya)bc = 0 for any x, y ∈ R . Hence
cxab ∈ Z(R) and byac ∈ Z(R). Clearly, (bac)4 = bacbac(bac)bac = bacba(bac)cbac = (b(acbab)ac)cbac = cba(b(acbab)ac)c =
cbaba(cbab)acc = cbab(cbab)aacc = 0, so bac ∈ N(R), which implies R is GWS. �

Since central symmetric rings are Abel and the ring in Example 2.2 is not Abel, the converse of Proposition 2.3 is not
true, in general.

Proposition 2.4. Let R be a GWS ring. If R satisfies one of the following conditions, then R is central symmetric:

(1) N(R) ⊆ Z(R);
(2) J (R) ⊆ Z(R).

Proof. Let abc = 0. Then ab(cy) = 0 for any y ∈ R . Since R is GWS, bacy ∈ N(R). Hence bacR ⊆ N(R), one obtains that
bac ∈ N(R) ∩ J (R). Thus (1) and (2) all implies bac ∈ Z(R). �

Clearly, subrings of GWS rings are GWS. Especially, if R is a GWS ring and e ∈ E(R), then eRe is GWS. But the converse is
not true, in general.

Example 2.5. Let D be a field and R =
(

D D
D D

)
. Since E11 E21 E12 = 0 and E21 E11 E12 = E22 /∈ N(R), R is not a GWS ring. But

E11 ∈ E(R) and E11 R E11 ∼= D is GWS.

Following [16], a ring R is called quasi-normal if eR(1 − e)Re = 0 for any e ∈ E(R). Clearly, Abel rings are quasi-normal.
But the following Example 2.12 implies Abel rings need not be GWS. Hence quasi-normal rings need not be GWS.

Now let F be a field and R =
(

F F F
0 F F
0 0 F

)
. Then following Theorem 2.7 shows that R is a GWS ring. Let e =

(
1 0 0
0 0 0
0 0 1

)
∈ E(R).

Then eR(1 − e)Re =
(

0 0 F
0 0 0
0 0 0

)
�= 0, R is not quasi-normal. Hence GWS rings need not be quasi-normal.

Proposition 2.6. Let R be a quasi-normal ring and e ∈ E(R). If eRe and (1 − e)R(1 − e) are all GWS, then R is GWS.
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