Contents lists available at ScienceDirect

www.elsevier.com/locate/jpaa

Projective modules over overrings of polynomial rings and a question of Quillen

JOURNAL OF PURE AND APPLIED ALGEBRA

Manoj K. Keshari*, Swapnil A. Lokhande

Department of Mathematics, IIT Bombay, Mumbai 400076, India

ARTICLE INFO

ABSTRACT

Article history: Received 15 March 2013 Received in revised form 3 September 2013 Available online 5 November 2013 Communicated by R. Parimala Let (R, \mathfrak{m}, K) be a regular local ring containing a field k such that either char k = 0 or char k = p and tr-deg $K/\mathbb{F}_p \ge 1$. Let g_1, \ldots, g_t be regular parameters of R which are linearly independent modulo \mathfrak{m}^2 . Let $A = R_{g_1 \cdots g_t} [Y_1, \ldots, Y_m, f_1(l_1)^{-1}, \ldots, f_n(l_n)^{-1}]$, where $f_i(T) \in k[T]$ and $l_i = a_{i1}Y_1 + \cdots + a_{im}Y_m$ with $(a_{i1}, \ldots, a_{im}) \in k^m - (0)$. Then every projective A-module of rank $\ge t$ is free. Laurent polynomial case $f_i(l_i) = Y_i$ of this result is due to Popescu.

 $\ensuremath{\textcircled{}}$ 2013 Elsevier B.V. All rights reserved.

1. Introduction

MSC:

13C10

In this paper, we will assume that rings are commutative Noetherian, modules are finitely generated, projective modules are of constant rank and k will denote a field.

Let *R* be a ring and *P* a projective *R*-module. We say that *P* is *cancellative* if $P \oplus R^m \xrightarrow{\sim} Q \oplus R^m$ for some projective *R*-module *Q* implies $P \xrightarrow{\sim} Q$. For simplicity of notations, we begin with a definition.

Definition 1.1. A ring $A = R[Y_1, ..., Y_m, f_1(l_1)^{-1}, ..., f_n(l_n)^{-1}]$ is said to be **of type** R[d, m, n] if R is a ring of dimension $d, Y_1, ..., Y_m$ are variables over R, each $f_i(T) \in R[T]$ and either each $l_i = Y_{i_j}$ for some i_j , or R contains a field k and $l_i = \sum_{j=1}^m a_{i_j} Y_j - b_i$ with $b_i \in R$ and $(a_{i_1}, ..., a_{i_m}) \in k^m - (0)$.

Let A be a ring of the type R[d, m, n]. We say that A is **of type** $R[d, m, n]^*$ if $f_i(T) \in k[T]$ and $b_i \in k$ for all i.

Let $A = R[Y_1, ..., Y_m, f_1(Y_1)^{-1}, ..., f_n(Y_n)^{-1}]$ be a ring of type R[d, m, n] with $n \le m$ and $l_i = Y_i$. If P is a projective A-module of rank $\ge \max \{2, d + 1\}$, then Dhorajia and Keshari [5, Theorem 3.12], proved that $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$ and hence P is cancellative. This result was proved by Bass [2] in case n = m = 0; Plumstead [12] in case m = 1, n = 0; Rao [16] in case n = 0; Lindel [8] in case $f_i = Y_i$. Gabber [6] proved the following result: Let k be a field and A a ring of type k[0, m, n]. Then every projective A-module is free. We prove the following result (Theorem 3.4) which generalizes [5, Theorem 3.12] and is motivated by Gabber's result.

Theorem 1.2. Let $A = R[Y_1, ..., Y_m, f_1(l_1)^{-1}, ..., f_n(l_n)^{-1}]$ be a ring of type R[d, m, n] and P a projective A-module of rank $\ge \max\{2, d+1\}$. Then $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$. In particular, P is cancellative.

The Bass–Quillen conjecture [3,15] says: If *R* is a regular ring, then every projective module over $R[X_1, ..., X_r]$ is extended from *R*. In B–Q conjecture, we may assume that *R* is a regular local ring, due to Quillen's local-global principal [15]: For a ring *B*, projective module *P* over $B[X_1, ..., X_r]$ is extended from *B* if and only if P_m is free for every maximal ideal m of *B*. We remark

* Corresponding author.

E-mail addresses: keshari@math.iitb.ac.in (M.K. Keshari), swapnil@math.iitb.ac.in (S.A. Lokhande).

^{0022-4049/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jpaa.2013.10.015

that Quillen's local global principal is also true for projective modules over positive graded rings [19, Theorem 3.1], whereas it is not true for Laurent polynomial rings [4, Example 2, p. 809].

Lindel [9] gave an affirmative answer to B–Q conjecture when *R* is a *regular k-spot*, i.e. $R = R'_p$, where *R'* is some affine *k*-algebra and p is a regular prime ideal of *R'*. Using Lindel's result, Popescu [13] proved B–Q conjecture when *R* is any regular local ring containing a field *k*.

Let (R, \mathfrak{m}) be a regular local ring. We say that $f \in \mathfrak{m}$ is a *regular parameter* of R if f is part of a minimal generating set of \mathfrak{m} . This is equivalent to $f \in \mathfrak{m} - \mathfrak{m}^2$. Further, let $g_1, \ldots, g_t \in \mathfrak{m}$ be regular parameters. Then g_1, \ldots, g_t are linearly independent modulo \mathfrak{m}^2 if and only if g_1, \ldots, g_t are part of a minimal generating set of \mathfrak{m} .

Quillen [15] had asked the following question whose affirmative answer would imply that B–Q conjecture is true: Assume (R, \mathfrak{m}) is a regular local ring and $f \in \mathfrak{m}$ a regular parameter of R. Is every projective R_f -module free?

Bhatwadekar and Rao [4] answered Quillen's question when *R* is a regular *k*-spot. More generally, they proved: Let (*R*, m) be a regular *k*-spot with infinite residue field and *f* a regular parameter of *R*. If *B* is one of *R*, *R*(*T*) or *R*_{*f*}, then projective modules over $B[X_1, \ldots, X_r, Y_1^{\pm 1}, \ldots, Y_s^{\pm 1}]$ are free.

Rao [17] generalized above result as follows: Let (R, \mathfrak{m}) be a regular k-spot with infinite residue field. Let g_1, \ldots, g_t be regular parameters of R which are linearly independent modulo \mathfrak{m}^2 . If $A = R_{g_1...g_t}[X_1, \ldots, X_r, Y_1^{\pm 1}, \ldots, Y_s^{\pm 1}]$, then projective A-modules of rank $\geq \min\{t, d/2\}$ are free.

Popescu [14] generalized Rao's result as follows: Let (R, \mathfrak{m}, K) be a regular local ring containing a field k such that either char k = 0 or char k = p and tr-deg $K/\mathbb{F}_p \ge 1$. Let g_1, \ldots, g_t be regular parameters of R which are linearly independent modulo \mathfrak{m}^2 . If $A = R_{g_1...g_t}[X_1, \ldots, X_r, Y_1^{\pm 1}, \ldots, Y_s^{\pm 1}]$, then projective A-modules of rank $\ge t$ are free.

We generalize Popescu's result as follows (Theorem 5.8):

Theorem 1.3. Let (R, m, K) be a regular local ring containing a field k such that either char k = 0 or char k = p and tr-deg $K/\mathbb{F}_p \ge 1$. Let g_1, \ldots, g_t be regular parameters of R which are linearly independent modulo m^2 . If $A = R_{g_1...g_t}[Y_1, \ldots, Y_m, f_1(l_1)^{-1}, \ldots, f_n(l_n)^{-1}]$ is a ring of type $R_{g_1...g_t}[d-1, m, n]^*$, then every projective A-module of rank $\ge t$ is free.

Note that we can not expect (1.3) for rings of type R[d, m, n]. For example, let R be either $\mathbb{R}[X, Y]_{(X,Y)}$ or $\mathbb{R}[[X, Y]]$ and $A = R[Z, f(Z)^{-1}]$ a ring of type R[2, 1, 1], where $f(T) = T^2 + X^2 + Y^2$. Then stably free A-module P of rank 2 given by the kernel of the surjection $(X, Y, Z) : A^3 \to A$ is not free. This will follow from the fact that P over the rings $\mathbb{R}[X, Y, Z]_{(X,Y,Z)}[f(Z)^{-1}]$ or $\mathbb{R}[[X, Y, Z]][f(Z)^{-1}]$ is not free [4, p. 808] and [11, p. 366].

2. Preliminaries

Let *A* be a ring and *M* an *A*-module. We say $m \in M$ is *unimodular* if there exist $\phi \in M^* = \text{Hom}_A(M, A)$ such that $\phi(m) = 1$. The set of all unimodular elements of *M* is denoted by Um(*M*). For an ideal $J \subset A$, we denote by $E^1(A \oplus M, J)$, the subgroup of $Aut_A(A \oplus M)$ generated by all the automorphisms

$$\Delta_{a\varphi} = \begin{pmatrix} 1 & a\varphi \\ 0 & id_M \end{pmatrix} \quad \text{and} \quad \Gamma_m = \begin{pmatrix} 1 & 0 \\ m & id_M \end{pmatrix}$$

with $a \in J$, $\varphi \in M^*$ and $m \in M$. In particular, if $E_{r+1}(A)$ is the group generated by elementary matrices over A, then $E_{r+1}^1(A, J)$ denotes the subgroup of $E_{r+1}(A)$ generated by

$$\Delta_{\mathbf{a}} = \begin{pmatrix} 1 & \mathbf{a} \\ 0 & id_F \end{pmatrix} \text{ and } \Gamma_{\mathbf{b}} = \begin{pmatrix} 1 & 0 \\ \mathbf{b}^t & id_F \end{pmatrix},$$

where $F = A^r$, $\mathbf{a} \in JF$ and $\mathbf{b} \in F$. We write $E^1(A \oplus M)$ for $E^1(A \oplus M, A)$.

By $\text{Um}^1(A \oplus M, J)$, we denote the set of all $(a, m) \in \text{Um}(A \oplus M)$ with $a \in 1 + J$, and $\text{Um}(A \oplus M, J)$ denotes the set of all $(a, m) \in \text{Um}^1(A \oplus M)$ with $m \in JM$. We write $\text{Um}_r(A, J)$ for $\text{Um}(A \oplus A^{r-1}, J)$ and $\text{Um}_r^1(A, J)$ for $\text{Um}^1(A \oplus A^{r-1}, J)$.

Let $p \in M$ and $\varphi \in M^*$ be such that $\varphi(p) = 0$. Let $\varphi_p \in End(M)$ be defined as $\varphi_p(q) = \varphi(q)p$. Then $1 + \varphi_p$ is a (unipotent) automorphism of M. An automorphism of M of the form $1 + \varphi_p$ is called a *transvection* of M if either $p \in Um(M)$ or $\varphi \in Um(M^*)$. We denote by E(M), the subgroup of Aut(M) generated by all transvections of M.

The following result is due to Bak, Basu and Rao [1, Theorem 3.10]. In [5], we proved results for $E^1(A \oplus P)$. Due to this result, we can interchange $E(A \oplus P)$ and $E^1(A \oplus P)$.

Theorem 2.1. Let A be a ring and P a projective A-module of rank ≥ 2 . Then $E^1(A \oplus P) = E(A \oplus P)$.

The following result follows from the definition.

Lemma 2.2. Let $I \subset J$ be ideals of a ring A and P a projective A-module. Then the natural map $E^1(A \oplus P, J) \rightarrow E^1(\frac{A}{T} \oplus \frac{P}{IP}, \frac{1}{T})$ is surjective.

Download English Version:

https://daneshyari.com/en/article/4596563

Download Persian Version:

https://daneshyari.com/article/4596563

Daneshyari.com