
An adaptive mobile cloud computing framework using a call graph
based model

Mahir Kaya n, Altan Koçyiğit, P. Erhan Eren
Middle East Technical University, Informatics Institute, Middle East Technical University, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 1 July 2015
Received in revised form
22 December 2015
Accepted 19 February 2016
Available online 26 February 2016

Keywords:
Code offloading
Distribution transparency
Inversion of Control
Graph partitioning
Mobile cloud computing

a b s t r a c t

The use of mobile applications and their functionality are increasing day by day but mobile devices are still
inferior to ordinary computers in terms of memory and processor capacity. Furthermore, the rapid depletion
of the mobile devices’ energy is still a major problem. Performance and energy shortcomings of mobile
devices can be improved by using surrogate or cloud computing technologies. In particular, computation and
memory intensive real time applications would be efficiently run by utilizing the resources of a remote
server. In this paper, a novel offloading framework based on the Inversion of Control mechanism is developed
to overcome the shortcomings and limitations of the current offloading approaches published in the lit-
erature. The proposed offloading framework reduces the burden on programmers. It implements application
partitioning and code offloading via remote proxy classes and seamlessly provides callback functionality. In
an application, it is possible to migrate different combinations of application components to remote servers.
Some of these combinations can be productive and others can be counterproductive for offloading. In order
to decide on components to be offloaded, a call graph model based on the collaboration of application’s
classes is developed. An offloading decision algorithm is presented to determine the classes to be offloaded
by finding the best application partitioning in the graph. The framework and the graph model are evaluated
by several experiments. Experimental results show that the proposed graph model fits well to the application
partitioning problem. It has also been shown that offloading the optimal combination of components to
remote servers can considerably reduce the execution time and energy consumption of mobile devices.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments in communication and mobile computing
technologies increase the demand for the transparent migration of
computation intensive applications to resourceful servers. Since
mobile devices (smartphones, tablets) still cannot compete against
their desktop equivalents for resource intensive applications such as
image and video processing, object recognition and augmented
reality applications, their capabilities can be augmented by
migrating CPU or memory intensive parts of the application to
remote servers. In order to overcome the resource limitations of
mobile devices, personal computers residing in the LAN to which
the mobile device is currently attached or shared resources of the
nearby cloudlet or remote cloud can be utilized for offloading.
Offloading is an invaluable contribution since it is utilized in per-
vasive computing environments in order to augment the capability

of resource-constrained mobile devices by migrating the compo-
nents of applications such as classes, objects, services or methods to
servers that are nearby machines (called surrogates) or the virtual
machines of the cloud (Ou et al., 2007).

Mobile devices generally use two methods to benefit from a
nearby powerful computer or cloud computing infrastructure. In
the first method, a virtual machine (VM) is entirely moved to the
remote server, re-started, made ready and returned the result after
making the calculations. In this method, not only the network cost
is too expensive, but also problems occur during instant calculations
when smartphone sensors need to be used on demand. The second
method is the application partitioning mechanism. This method can
be grouped under three sub-categories; the proxy-based methods
via the Remote Method Invocation (RMI) (Oracle 2010a), preparing
computation intensive parts as a service using the Interface Defi-
nition Language (IDL) (Android 2008), and the OSGi service-based
method (OSGi 2010). Partitioning an application and sending the
offloadable components to remote servers incurs less overhead, but
requires various degrees of program restructuring; and in both
cases, problems can arise when an application runs processes that
are dependent on the resources of a smartphone.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2016.02.013
1084-8045/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author at: Informatics Institute, Middle East Technical Uni-
versity, Ankara, Turkey.

E-mail addresses: kmahir@metu.edu.tr, mahirkaya@gmail.com (M. Kaya),
kocyigit@metu.edu.tr (A. Koçyiğit), ereren@metu.edu.tr (P.E. Eren).

Journal of Network and Computer Applications 65 (2016) 12–35

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.02.013
http://dx.doi.org/10.1016/j.jnca.2016.02.013
http://dx.doi.org/10.1016/j.jnca.2016.02.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.013&domain=pdf
mailto:kmahir@metu.edu.tr
mailto:mahirkaya@gmail.com
mailto:kocyigit@metu.edu.tr
mailto:ereren@metu.edu.tr
http://dx.doi.org/10.1016/j.jnca.2016.02.013

Recent studies based on services (application components) that
require the use of IDL and an OSGI middleware implement the
computation intensive parts as services and migrate these services to
a remote server. However, these services should be independent of
resources of the smartphone such as sensors and cameras, which
decrease the distribution transparency of the frameworks. Another
problem is that even if services run locally, the application commu-
nicates with these services using Inter-Process Communication (IPC)
via the network stack, which is time-consuming and thus limits the
goal of the computation offloading in terms of increasing the per-
formance and reducing the energy consumption. Marshalling (seri-
alization) arguments of the services also creates argument incon-
sistencies if the remote server changes the fields of the method
argument object. In addition, Microsoft’s DCOM (Chung et al., 1998;
Plášil and Stal 1998) and OMG’s CORBA (Chung et al., 1998; Plášil and
Stal 1998) are well-known architectures for distributed applications.
However, they also suffer from argument inconsistency. It is assumed
that arguments are passed by value or they are immutable.

Although significant research has been conducted on the mobile
cloud computing systems (Ou et al., 2007; Cuervo et al., 2010; Kris-
tensen and Bouvin 2010; Chun et al., 2011; Chen et al., 2012a; Kemp
et al., 2012; Verbelen et al., 2012; Flores et al., 2015) there are still
several challenges to be addressed as stated above concerning the
design and implementation of a widely adopted framework and the
selection of components to offload in current smartphone applica-
tions. The limited bandwidth in wireless networks as well as high
and changing network latencies in a WAN environment also need to
be considered (Satyanarayanan et al., 2009). Therefore, an adaptive,
seamless offloading strategy should be implemented without
resulting in any extra overhead for the smartphone applications.

The offloading technique presented in this study is based on
the Inversion of Control (IoC) (Fowler 2004; Kaya et al., 2014). This
technique seamlessly synchronizes resource access on both the
smartphone and the surrogate/cloud side of an application and
eliminates the limitations of the existing offloading approaches
(Kumar et al., 2013; Shiraz et al., 2015). First, we address the
software modules that are not suitable for offloading; such as
software modules providing the Graphical User Interface (GUI),
sensors and network components. Other components are candi-
dates to be offloaded to resourceful servers but we also consider
the components that may require access to smartphone resources;
such as local database and sensors to provide a transparent call-
back functionality. The selection of the components to be off-
loaded depends on certain factors; such as the amount of the
computation and data required for the method call, and the
bandwidth of the wireless access network.

In this paper, in addition to the offloading technique, a framework
is presented to simplify developing elastic applications with off-
loadable components and making dynamic offloading decisions for
optimal application partitioning. To this end, we propose a novel
graph model to collect the profiling information and then to identify
the classes of the application to be offloaded and to be executed on
the remote server. Constructing the call graph, the offloading deci-
sion problem is converted to the graph partitioning (min-cut) pro-
blem (Karypis and Kumar 1998). Finding an optimal solution for the
graph partition is shown to be NP-Hard (Kernighan and Lin 1970;
Karypis and Kumar 1998), therefore in this study, we implement a
well-known graph partitioning heuristic, Fiduccia and Mattheyses
(FM) heuristic (Fiduccia and Mattheyses 1982; Hendrickson and
Leland 1995), to determine the minimum edge-cut that is the best
offloading decision. We offload different combinations of application
classes to identify the cases where offloading can be counter-
productive. This is important in terms of finding an optimal solution
for offloading to decrease the network cost involved.

The key contributions of this paper are; (1) providing distribution
transparency for mobile cloud computing and (2) creating a graph

model based on the method calls and using this model to decide on
the best partition containing classes to be offloaded. Distribution
transparency is achieved by creating proxies for offloadable classes
both on the smartphone and on the server side using the offloading
factory to achieve remote object access. The object ids are exchanged
instead of the serialized objects across the network hence the objects
in different devices collaborate with each other seamlessly. Offloading
can be counterproductive if one of the offloaded classes of the appli-
cation is heavily dependent on smartphone resources, which increases
the network cost. Our graph model handles this issue by providing
profitable application partitions for offloading.

To evaluate the offloading framework, we used the Android
Operating System (OS) on the smartphone and J2SE on the server
side, and assessed the performance of offloading on real time
applications. An Object Recognition (OR) (Kemp et al., 2009)
application was used since it shows the effectiveness of the pro-
posed framework. Using the OR application, the offloading tech-
nique and decision model were implemented. The graph model
allowed us to determine the best offloading decision and the
results were validated conducting several experiments on the real
time application. The second application is an image filter appli-
cation that applies different image filtering algorithms.

This paper is organized as follows: Section 2 presents an
overview of the related work on offloading methods and off-
loading decisions. The offloading approaches are summarized in
Section 3. Section 4 describes the proposed graph model and off-
loading decision algorithm. Section 5 presents the offloading fra-
mework architecture and method calls with dynamic proxies and
provides a pseudo-code of the offloading technique. Section 6
shows how the proposed offloading framework is implemented,
and Section 7 presents the performance evaluation of the frame-
work. Finally, Section 8 concludes the present work discussing the
limitations of our study and possible future work.

2. Related work

In this section, we present an overview of the research in the
literature regarding application partitioning and computation off-
loading. For application partitioning, graph based approaches can be
used to partition an application graph into a number of disjoint
subsets that contain the list of classes to be offloaded to resourceful
servers. The cumulative weight of edges whose incident vertices are
located in different virtual machines is called the edge-cut of the
partition. The main goal of application partitioning is to minimize
the edge-cut that determines the network cost. Although deter-
mining the optimal partitioning to distribute the components of
applications is an NP-Hard problem, there are various classical
heuristics offering solutions (Kernighan and Lin 1970; Fiduccia and
Mattheyses 1982; Hendrickson and Leland 1995; Karypis and
Kumar 1998); however, these heuristics need to be adapted to
mobile environment in terms of costs and balance constraints. In
addition, Ou et al. (2007) proposed a different multi-level graph
partitioning heuristic for mobile applications coarsening the graph
based on the heavy edge-light vertex algorithm. The coarsening
phase continues until the subsets/partitions that are suitable for
component distribution are achieved. The algorithm randomly
chooses vertices and merges them with their neighbors that have
low vertex cost and high edge weight. The edge weight of this
heuristic is the frequency of the method call among different clas-
ses. The vertex weight represents memory and CPU processing cost.
The runtime complexity of this heuristic is O(|V|3) (|V| is the number
of vertices) and the computation process for finding suitable par-
titions to offload is also expensive. Abebe and Ryan (2012) imple-
mented the same heuristic but maintained the distributed parti-
tions on the cloud side to decrease the memory-related costs.

M. Kaya et al. / Journal of Network and Computer Applications 65 (2016) 12–35 13

Download English Version:

https://daneshyari.com/en/article/459661

Download Persian Version:

https://daneshyari.com/article/459661

Daneshyari.com

https://daneshyari.com/en/article/459661
https://daneshyari.com/article/459661
https://daneshyari.com

