FISFVIFR

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Local cohomology of bigraded Rees algebras and normal Hilbert coefficients

Shreedevi K. Masuti 1, J.K. Verma *

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India

ARTICLE INFO

Article history: Received 20 March 2013 Received in revised form 8 August 2013 Available online 9 November 2013 Communicated by S. Iyengar

MSC:

Primary: 13D45; 13D40; secondary: 13A30; 14H20

ABSTRACT

Let (R,\mathfrak{m}) be an analytically unramified Cohen–Macaulay local ring of dimension 2 with infinite residue field and \overline{I} be the integral closure of an ideal I in R. Necessary and sufficient conditions are given for $\overline{I^{r+1}J^{s+1}}=a\overline{I^rJ^{s+1}}+b\overline{I^{r+1}J^s}$ to hold for all $r\geqslant r_0$ and $s\geqslant s_0$ in terms of vanishing of $[H^2_{(at_1,bt_2)}(\overline{\mathcal{R}'}(I,J))]_{(r_0,s_0)}$, where $a\in I,b\in J$ is a good joint reduction of the filtration $\{\overline{I^rJ^s}\}$. This is used to derive a theorem due to Rees on normal joint reduction number zero. The vanishing of $\overline{e}_2(IJ)$ is shown to be equivalent to Cohen–Macaulayness of $\overline{\mathcal{R}}(I,J)$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let R be a commutative ring. Let I be an ideal of R. An element $x \in R$ is called integral over I if x satisfies the equation

$$x^{n} + a_1 x^{n-1} + \cdots + a_n = 0$$

for some $a_i \in I^i$, i = 1, 2, ..., n. The set \overline{I} of elements that are integral over I is an ideal, called the *integral closure* of I. If $I = \overline{I}$ then I is called *complete* or *integrally closed*. A Noetherian local ring (R, \mathfrak{m}) is said to be *analytically unramified* if its \mathfrak{m} -adic completion is reduced. Let I be an \mathfrak{m} -primary ideal. In an analytically unramified local ring R of dimension d, there exists a polynomial $\overline{P}_I(x) \in \mathbb{Q}[x]$ of degree d called the *normal Hilbert polynomial* of I, such that

$$\lambda(R/\overline{I^n}) = \overline{P}_I(n) \quad \text{for } n \gg 0,$$

where $\lambda(M)$ denotes the length of an R-module M [12, Theorem 1.4] and [13, Theorem 1.1]. We write

$$\overline{P}_I(n+1) = \overline{e}_0(I) \binom{n+d}{d} - \overline{e}_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d \overline{e}_d(I)$$

for some integers $\bar{e}_i(I)$, $i=0,\ldots,d$. The coefficient $\bar{e}_0(I)=e(I)$ is called the *multiplicity of I*. P.B. Bhattacharya [1, Theorem 8] showed that for m-primary ideals I and J in a Noetherian local ring (R,\mathfrak{m}) of dimension d there exist integers $e_{(i,j)}(I,J)$ such that for large r,s

$$\lambda(R/I^r J^s) = \sum_{i+j \le d} (-1)^{d-(i+j)} e_{(i,j)}(I, J) \binom{r+i-1}{i} \binom{s+j-1}{j}.$$

^{*} Corresponding author.

E-mail addresses: shreedevi@math.iitb.ac.in (S.K. Masuti), jkv@math.iitb.ac.in (J.K. Verma).

 $^{^{1}\,}$ The first author is supported by the National Board for Higher Mathematics, India.

Let $\mathbb N$ denote the set of nonnegative integers. Rees studied the numerical function

$$\overline{H}_{I,J}: \mathbb{N}^2 \longrightarrow \mathbb{N}$$
 defined as $\overline{H}_{I,J}(r,s) = \lambda (R/\overline{I^r}J^s)$.

He proved [15] that there exists a polynomial $\overline{P}_{I,J}(x,y) \in \mathbb{Q}[x,y]$ of total degree d such that $\overline{P}_{I,J}(r,s) = \overline{H}_{I,J}(r,s)$ for $r, s \gg 0$ in an analytically unramified local ring. We write

$$\overline{P}_{I,J}(x,y) = \sum_{i+j \le d} (-1)^{d-(i+j)} \overline{e}_{(i,j)}(I,J) \binom{x+i-1}{i} \binom{y+j-1}{j}$$

for some integers $\bar{e}_{(i,j)}(I,J)$. Let

extended Rees ring of
$$\mathcal{I} = \{I^r J^s\}$$
 be $\mathcal{R}'(I, J) = \bigoplus_{r,s \in \mathbb{Z}} I^r J^s t_1^r t_2^s$,

extended Rees ring of
$$\mathcal{I} = \{\overline{I^r J^s}\}$$
 be $\overline{\mathcal{R}'}(I, J) = \bigoplus_{r,s \in \mathbb{Z}} \overline{I^r J^s} t_1^r t_2^s$.

One of the main objectives of this paper is to understand an interesting theorem of Rees [15] which asserts that $\bar{e}_2(IJ)$ $\bar{e}_2(I) + \bar{e}_2(I)$ for m-primary ideals I and I in an analytically unramified Cohen-Macaulay local ring of dimension 2 with infinite residue field if and only if for all $r, s \ge 0$,

$$\overline{I^{r+1}I^{s+1}} = a\overline{I^rI^{s+1}} + b\overline{I^{r+1}I^s},$$
(1.1)

where $a \in I$, $b \in I$ is a good joint reduction of I and I. See Section 2. As a consequence Rees proved that product of complete ideals is complete in 2-dimensional pseudo-rational local rings. Rees showed that regular local rings are pseudo-rational and thus generalized Zariski's product theorem. Another consequence of Rees's theorem is a formula for the Hilbert polynomial of an integrally closed ideal in a two-dimensional regular local ring. We generalize Rees's theorem:

Theorem 1.2. Let R be an analytically unramified Cohen–Macaulay local ring of dimension 2 with infinite residue field and (a, b) be a good joint reduction of the filtration $\{\overline{I^r}, \overline{I^s}\}$. Let $r_0, s_0 \ge 0$. Then following statements are equivalent:

(1)
$$\bar{e}_2(I) + \bar{e}_2(J) - \bar{e}_2(IJ) = \lambda(R/\overline{I^{r_0}J^{s_0}}) - g_{r_0}(I,J) - h_{s_0}(I,J) - r_0s_0e(I|J),$$

(2)
$$[H^{2}_{(at_{1},bt_{2})}(\overline{\mathcal{R}'}(I,J))]_{(r_{0},s_{0})} = 0,$$

(3) $I^{r+1}J^{s+1} = aI^{r}J^{s+1} + bI^{r+1}J^{s}$ for $r \ge r_{0}$, $s \ge s_{0}$,

where $e(I|J) = e_{(1,1)}(I, J)$ and $g_{r_0}(I, J), h_{s_0}(I, J)$ satisfy

$$\begin{split} &\lambda \left(\overline{J^s}/\overline{I^{r_0}\,J^s}\right) = e(I|J)r_0s + g_{r_0}(I,\,J) \quad \textit{for } s \gg 0 \quad \textit{and} \\ &\lambda \left(\overline{I^r}/\overline{I^r\,J^{s_0}}\right) = e(I|J)rs_0 + h_{s_0}(I,\,J) \quad \textit{for } r \gg 0. \end{split}$$

We derive a formula for $\lambda([H^2_{(at_1,bt_2)}(\overline{\mathcal{R}'}(I,J))]_{(r,s)})$ in terms of Hilbert coefficients. The above theorem also gives a cohomological interpretation of Rees's theorem since

$$\lambda([H^2_{(at_1,bt_2)}(\overline{\mathcal{R}'}(I,J))]_{(0,0)}) = \bar{e}_2(I) + \bar{e}_2(J) - \bar{e}_2(IJ).$$

We will gather some preliminary results about existence of good joint reductions in Section 2.

In Section 3, we calculate the local cohomology of bigraded extended Rees algebra of the filtration $\{\overline{I^r I^s}\}$.

In Section 4, a new proof of Rees's theorem and its generalization are obtained. We give an application of Theorem 1.2 to the normal reduction number of an ideal by deriving a result of T. Marley [11, Corollary 3.8] which asserts that $\bar{r}(I) \le k+1$ if and only if $\lambda(R/I^k) = \overline{P}_I(k)$.

In Section 5, we study vanishing of $\bar{e}_2(IJ)$. We prove that the vanishing of $\bar{e}_2(IJ)$ is equivalent to Cohen-Macaulayness of $\overline{\mathcal{R}}(I, I)$, where

$$\overline{\mathcal{R}}(I,J) = \bigoplus_{r,s \geqslant 0} \overline{I^r J^s} t_1^r t_2^s = \text{the Rees ring of the filtration } \mathcal{I} = \{\overline{I^r J^s}\}.$$

We refer [3] for all undefined terms.

Download English Version:

https://daneshyari.com/en/article/4596664

Download Persian Version:

https://daneshyari.com/article/4596664

<u>Daneshyari.com</u>