Journal of Network and Computer Applications 65 (2016) 167-180

Journal of Network and Computer Applications e

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at ScienceDirect

NETWORKE
COMPUTER
APPLICATIONS

N AA

A reliable and cost-efficient auto-scaling system for web applications @CmssMark
using heterogeneous spot instances

Chenhao Qu*, Rodrigo N. Calheiros, Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne, Australia

ARTICLE INFO

ABSTRACT

Article history:

Received 17 September 2015
Received in revised form

2 December 2015

Accepted 1 March 2016
Available online 5 March 2016

Keywords:

Cloud computing
Auto-scaling
Web application
Fault tolerant
Cost

QoS

Spot instance

Cloud providers sell their idle capacity on markets through an auction-like mechanism to increase their
return on investment. The instances sold in this way are called spot instances. In spite that spot instances
are usually 90% cheaper than on-demand instances, they can be terminated by provider when their
bidding prices are lower than market prices. Thus, they are largely used to provision fault-tolerant
applications only. In this paper, we explore how to utilize spot instances to provision web applications,
which are usually considered as availability-critical. The idea is to take advantage of differences in price
among various types of spot instances to reach both high availability and significant cost saving. We first
propose a fault-tolerant model for web applications provisioned by spot instances. Based on that, we
devise novel cost-efficient auto-scaling polices that comply with the defined fault-tolerant semantics for
hourly billed cloud markets. We implemented the proposed model and policies both on a simulation
testbed for repeatable validation and Amazon EC2. The experiments on the simulation testbed and EC2
show that the proposed approach can greatly reduce resource cost and still achieve satisfactory Quality of
Service (QoS) in terms of response time and availability.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There are three common pricing models in current Infrastructure-
as-a-service (laaS) cloud providers, namely on-demand, in which
acquired virtual machines (VMs) are charged periodically with fixed
rates, reservation, where users pay an amount of up-front fee for each
VM to secure availability of usage and cheaper price within a certain
contract period, and the spot.

The spot pricing model was introduced by Amazon to sell their
spare capacity in open market through an auction-like mechanism.
The provider dynamically sets the market price of each VM type
according to real-time demand and supply. To participate in the
market, a cloud user needs to give a bid specifying number of
instances for the type of VM he wants to acquire and the maximum
unit price he is willing to pay. If the bidding price exceeds the current
market price, the bid is fulfilled. After getting the required spot VMs,
the user only pays the current market prices no matter how much he
actually bids, which results in significant cost saving compared to VMs
billed in on-demand prices (usually only 10% to 20% of the latter)
(http://aws.amazon.com/ec2/spot-instances/). However, obtained spot
VMs will be terminated by cloud provider whenever their market
prices rise beyond the bidding prices.

* Corresponding author.

http://dx.doi.org/10.1016/j.jnca.2016.03.001
1084-8045/© 2016 Elsevier Ltd. All rights reserved.

Such model is ideal for fault-tolerant and non-time-critical
applications such as scientific computing, big data analytics, and
media processing applications. On the other hand, it is generally
believed that availability- and time-critical applications, like web
applications, are not suitable to be deployed on spot instances.

Adversely in this paper, we illustrate that, with effective fault-
tolerant mechanism and carefully designed policies that comply
with the fault-tolerant semantics, it is also possible to reliably
scale web applications using spot instances to reach both high QoS
and significant cost saving.

Spot market is similar to a stock market that, though possibly
following the general trends, each listed item has its distinctive
market behavior according to its own supply and demand. In this
kind of market, often price differences appear with some types of
instances sold in expensive prices due to high demand, while
some remaining unfavored leading to attractive deals. Fig. 1
depicts a period of Amazon EC2's spot market history. Within this
time frame, there were always some spot types sold in discounted
prices. By exploiting the diversity in this market, cloud users can
utilize spot instances as long as possible to further reduce their
cost. Recently, Amazon introduced the Spot Fleet API (https://aws.
amazon.com/blogs/aws/ new-resource-oriented-bidding-for-ec2-
spot-instances/), which allows users to bid for a pool of resources
at once. The provision of resources is automatically managed by
Amazon using combination of spot instances with lowest cost.
However, it still lacks fault-tolerant capability to avoid availability


www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.03.001
http://dx.doi.org/10.1016/j.jnca.2016.03.001
http://dx.doi.org/10.1016/j.jnca.2016.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.03.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.03.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.03.001&domain=pdf
http://dx.doi.org/10.1016/j.jnca.2016.03.001

168

C. Qu et al. / Journal of Network and Computer Applications 65 (2016) 167-180

3.5

c1.medium
c3.large
c3.xlarge

4 |——m1.large
——m1.medium
g m1.small
—m1.xlarge

I

4 | ——m2.2xlarge

——m2.xlarge
ma3.large

—— m3.medium

——m3.xlarge
r3.large

time

Fig. 1.

and performance impact caused by sudden termination of spot
instances, and thus, is not suitable to provision web applications.

To fill in this gap, we aim to build a solution to cater this need.
We proposed a reliable auto-scaling system for web applications
using heterogeneous spot instances along with on-demand
instances. Our approach not only greatly reduces financial cost of
using cloud resources, but also ensures high availability and low
response time, even when some types of spot VMs are terminated
unexpectedly by cloud provider simultaneously or consecutively
within a short period of time.

The main contributions of this paper are

a fault-tolerant model for web applications provisioned by spot
instances;

cost-efficient auto-scaling policies that comply with the defined
fault-tolerant semantics using heterogeneous spot instances;
event-driven prototype implementations of the proposed auto-
scaling system on CloudSim (Calheiros et al., 2011) and Amazon
EC2 platform;

performance evaluations through both repeatable simulation
studies based on historical data and real experiments on
Amazon EC2;

The remainder of the paper is organized as follows. We first model
our problem in Section 2. In Section 3, we propose the base auto-
scaling policies using heterogeneous spot instances under hourly bil-
led context. Section 4 explains the optimizations we proposed on the
initial polices. Section 5 briefly introduces our prototype imple-
mentations. We present and analyze the results of the performance
evaluations in Section 6 and discuss the related works in Section 7.
Finally, we conclude the paper and vision our future work.

2. System model

For reader's convenience, the symbols used in this paper are
listed in Table 1.

2.1. Auto-scaling system architecture

As illustrated in Fig. 2, our auto-scaling system provisions a
single-tier (usually the application server tier) of an application
using a mixture of on-demand instances and spot instances. The
provisioned on-demand instances are homogeneous instances
that are most cost-efficient regarding the application, while spot
instances are heterogeneous.

Like other auto-scaling systems, our system is composed of the
monitoring module, the decision-making module, and the load
balancer. The monitoring module consists of multiple independent
monitors that are responsible for fetching newest corresponding
system information such as resource utilizations, request rates,

One week spot price history from March 2nd 2015 18:00:00 GMT in Amazon EC2's us—east—1d Availability Zone.

Table 1
List of symbols.

Symbol Meaning

T The set of spot types

Mmin The minimum allowed resource margin of an instance

Maer The default resource margin of an instance

Q The quota for each spot group

R The required resource capacity for the current load

Fnax The maximum allowed fault-tolerant level

f The specified fault-tolerant level

(0] The minimum percentage of on-demand resources
in the provision

S The maximum number of selected spot groups
in the provision

To The resource capacity provisioned by on-demand
instances

s The number of chosen spot groups

vm The VM type

vm, The on-demand VM type

Cym The hourly on-demand cost of the vm type instance

num(c, vim) The function returns the number of vm type
instances required to satisfy resource capacity ¢

Co The hourly cost of provision in on-demand mode

thym The truthful bidding price of vm spot group

m The dynamic resource margin of an instance

spot market prices, and VMs’ statuses into the system. The
decision-making module then makes scaling decisions according
to the obtained information based on the predefined strategies
and policies when necessary. Since in our proposed system pro-
visioned virtual cluster is heterogeneous, the load balancer should
be able to distribute requests according to the capability of each
attached VM. The algorithm we use in this case is weighted round
robin.

The application hosted by the system should be stateless. This
restriction does not reduce the applicability of the system as
modern cloud applications are meant to de developed in a state-
less way in order to realize high scalability and availability (Wilder,
2012). In addition, stateful applications can be easily transformed
into stateless services using various means, e.g., storing the session
data in a separated memcache cluster.

2.2. Fault-tolerant mechanism

Suppose there are sufficient temporal gaps between price
variation events of various types of spot VMs, increasing spot
heterogeneity in provision can improve robustness. As illu-
strated in Fig. 3(a), the application is fully provisioned using 40
m3.medium spot VMs only, which may lead it to losing 100% of
its capacity when m3.medium's market price go beyond the



Download English Version:

https://daneshyari.com/en/article/459671

Download Persian Version:

https://daneshyari.com/article/459671

Daneshyari.com


https://daneshyari.com/en/article/459671
https://daneshyari.com/article/459671
https://daneshyari.com

