
Review

A survey of fault tolerance architecture in cloud computing

Mehdi Nazari Cheraghlou a,n, Ahmad Khadem-Zadeh b, Majid Haghparast c

a Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
b Iran Telecommunication Research Center (ITRC), Tehran, Iran
c Department of Computer Engineering, Yadegar -e- Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 10 July 2015
Received in revised form
21 September 2015
Accepted 18 October 2015
Available online 28 October 2015

Keywords:
Cloud computing
Fault tolerance architecture
Proactive
Reactive

a b s t r a c t

Utilizing cloud computing services has had numerous advantages such as the reduction of costs,
development of efficiency, central promotion of soft wares, compatibility of various formats, unlimited
storage capacity, easy access to services at any time and from any location and, most importantly, the
independency of these services from the hardware. It should be mentioned that the provision of various
cloud computing services is faced with problems and challenges that the fault tolerance can be men-
tioned as the main restrictions.

In this paper, first, methods of creating the capacity of Fault Tolerance in Cloud computing are pointed
out. Subsequently, policies of the implementation of these methods are stated. Next, the offered archi-
tectures for the production of such capacity in Cloud computing is delineated and, finally, they are
compared in terms of the type of policy or policies employed in the architecture and the method of fault
detection and fault recovery.

& 2015 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . 82
1.1. Cloud computing models . 82
1.2. Cloud computing challenges . 82
1.3. Fault tolerance techniques: overview . 82

2. Fault tolerance architecture models . 83
2.1. Proactive architecture . 83

2.1.1. Map-reduce architecture . 83
2.1.2. FT-Cloud architecture. 83

2.2. Reactive architecture . 83
2.2.1. Haproxy architecture . 83
2.2.2. BFT-Cloud architecture . 83
2.2.3. Gossip architecture . 84
2.2.4. MPI (Message Passing Interface) architecture. 85
2.2.5. FTM architecture . 86
2.2.6. Magi-Cube architecture . 86
2.2.7. LLFT architecture . 87
2.2.8. Vega Warden architecture . 87
2.2.9. FTWS architecture . 87
2.2.10. Candy architecture. 88
2.2.11. AFTRC architecture. 88
2.2.12. PLR architecture . 89

3. Discussion and evaluation. 90

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2015.10.004
1084-8045/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: ir.m.n@ieee.org (M. Nazari Cheraghlou), zadeh@itrc.ac.ir (A. Khadem-Zadeh), haghparast@iausr.ac.ir (M. Haghparast).

Journal of Network and Computer Applications 61 (2016) 81–92

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.10.004
http://dx.doi.org/10.1016/j.jnca.2015.10.004
http://dx.doi.org/10.1016/j.jnca.2015.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.10.004&domain=pdf
mailto:ir.m.n@ieee.org
mailto:zadeh@itrc.ac.ir
mailto:haghparast@iausr.ac.ir
http://dx.doi.org/10.1016/j.jnca.2015.10.004

4. Conclusion . 92
References . 92

1. Introduction

The emergence of Cloud is the biggest change in the world of IT,
leading to the stimulation of all individuals and all companies.
Complete definition of cloud computing which is considered a
standard for cloud computing is the golden definition that is
presented by NIST institute (Mell and Grance, 2011). In this defi-
nition, it is expressed that cloud computing is a demand-based
and easy access model under a network to a sharing set of con-
figurable computing resources (including servers, networks, sto-
rage devices, applications, and services). The resources are pro-
vided and used quickly and they are released with minimal effort
and cost.

1.1. Cloud computing models

Cloud computing can be implemented in the forms of public,
private, community and hybrid cloud (Mell and Grance, 2011).
Using the public cloud is possible for all but private cloud is
dedicated to a collection and only members can take advantage of
cloud services. Community cloud is exploited in sharing form for
individuals or organizations that have similar missions and needs.
Hybrid cloud is a combination of two or more different clouds that
each of them should be able to provide more combined services
together while preserving their separate identities.

1.2. Cloud computing challenges

Cloud is a virtual and abstract image of a large network that
neither its volume nor its size and also processing and storage
resources are specified and limited. Location and time are also
unknown and unlimited in the cloud. This means that resources’
location is hidden from the perspective of users and applications
and presentation time and completion of the services and they
seem to be unlimited. Desired services can be accessed from any
place and at any time. These characteristics cause removing the
restrictions in using systems and traditional networks in providing
service to users, but they may bring some new problems, restric-
tions, and challenges for users and applications. On top of these
problems, the fault tolerance challenge of cloud has a special
status and importance. Because if we have the best clouds with the
best services but they do not have fault tolerance, they are not
reliable and expectation of appropriate and desired service are
futile. Therefore, fault tolerance means that if a fault occurred in a
cloud, it should be able to detect and identify that fault and
recovery and improve it without any damage to the final output of
cloud computing. This capability causes that the cloud be able to
have an optimum and acceptable performance in the presence of
the faults.

1.3. Fault tolerance techniques: overview

The techniques that are used to create the fault tolerance
capability in cloud computing can be divided into three general
categories. The first is redundancy techniques, the second is tol-
erance policies against and finally, the third is load balancing fault
tolerance. Redundancy techniques include hardware redundancy
and software redundancy and time redundancy. Hardware
redundancy is a technique of structural redundancy which masks
the fault using a complete series of modules. The method is in such

a way that an identical number of hardware modules perform
identical operations. Hardware modules’ inputs are the same and
the modules’ outputs are aggregated and then, a majority vote is
taken. Thus, the fault effect will be removed in the output. It is
worth noting that voting will be done by TMR: Triple Modular
Redundancy. In the case of software redundancy, our agenda is
running a program with the same input but with different
implementation algorithms. In other words, the data processing
method is identical but it is performed using different algorithms
on the same input data. Obviously, the same outputs are expected
but if different outputs be achieved, the correct output can be
achieved by the majority vote of outputs. In the case of time
redundancy, identical hardware and software are as the constant
parameters of the problem. We pursue multiple running of a
program in an identical hardware. In this case, we can completely
cover the fault in the output with the majority vote of the per-
formance results of running a program.

Fault types that have been mentioned in (Kumar et al., 2015;
Saikia and Devi, 2014; Amin et al., 2015) and occur in cloud
computing are different based on computing resources. Among
them are Network Fault, Physical Faults, Process Faults, Processor
Faults and Service Expiry Fault.

Techniques for creating and increasing the fault tolerance based
on the load balancing also can be performed based on hardware
and software and also based on the network (Singh and Kinger,
2013). In the case of hardware, requests from a client are sent to
the hosts of a cluster. In the case of software, we have a dispatcher
server that is performed on all incoming requests. The dis-
advantage of this method is that this dispatcher server has a high
potential for bottleneck. The third method which is a software
solution based on the network, does not require any additional
hardware. There is also no need to have a central dispatcher to be
a bottleneck because, all host receives incoming packets and
redundancy occurs with respect to the number of clusters. The
packet filtering algorithm is very effective in handling the packets.

Among other applications of Load Balancing Mechanism in
cloud computing, we can refer to Resource Management which
has been discussed in (Manvi and Krishna Shyam, 2014). Resource
Management in cloud computing is accompanied by advantages
including scalability, QOS, reduced overhead and increased
throughput. Resources are generally divided into physical and
logical groups. Logical resources provide temporary control over
physical resources. Also, logical resources support the develop-
ment of applications and effective communication protocols. Load
Balancing mechanisms, in addition to being considered as one of
the methods to increase the fault tolerance of cloud computing,
provide Logical Resource Management in cloud computing. Given
that physical facilities in cloud computing are placed in a dis-
tributed manner, Network Resource Management develops and
improves using load balancing techniques. Further, fault tolerance
increases at the same time.

The last way to create fault tolerance in the cloud computing
services is creating this capability based on using a series of
policies. These policies are divided into two categories of proactive
and Reactive which will be studied. The method in proactive is
such that the fault in cloud computing is estimated and necessary
precautions should be considered. But the working style in the
reactive group is different and there will not be any prediction and
prevention of fault because it wastes resources and increases the
response time of the system especially in the case of real time

M. Nazari Cheraghlou et al. / Journal of Network and Computer Applications 61 (2016) 81–9282

Download English Version:

https://daneshyari.com/en/article/459703

Download Persian Version:

https://daneshyari.com/article/459703

Daneshyari.com

https://daneshyari.com/en/article/459703
https://daneshyari.com/article/459703
https://daneshyari.com

