

Contents lists available at SciVerse ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Support varieties for Frobenius kernels of classical groups

Paul Sobaje*

Department of Mathematics & Statistics, University of Melbourne, Parkville, VIC 3010, Australia

ARTICLE INFO

Article history:
Received 12 January 2012
Received in revised form 29 February 2012
Available online 15 May 2012
Communicated by D. Nakano

ABSTRACT

Let G be a classical simple algebraic group over an algebraically closed field k of characteristic p>0, and denote by $G_{(r)}$ the r-th Frobenius kernel of G. We show that for p large enough, the support variety of a simple G-module over $G_{(r)}$ can be described in terms of support varieties of simple G-modules over $G_{(1)}$. We use this, together with the computation of the varieties $V_{G_{(1)}}(H^0(\lambda))$, given by Jantzen (1987) in [8] and by Nakano et al. (2002) in [10], to explicitly compute the support variety of a block of $Dist(G_{(r)})$.

© 2012 Elsevier B.V. All rights reserved.

The aim of this paper is to provide computations of support varieties for modules over Frobenius kernels of algebraic groups. Specifically, for G a classical simple algebraic group over an algebraically closed field k of characteristic p > 0, we give a description (Theorem 3.2) of the support variety of a simple G-module over the r-th Frobenius kernel $G_{(r)}$ in terms of the support varieties of simple G-modules over $G_{(1)}$. Our proofs establish these results only under the assumption that p is large enough for the root system of G. A lower bound on G is provided in Section 3, roughly speaking it is the Coxeter number of G multiplied by a quadratic polynomial in the rank of G. In Section 4, we apply this result for $G = SL_n$ or Sp_{2n} , to give an explicit description of the support variety of a block of the distribution algebra $Dist(G_{(r)})$.

We should emphasize that the varieties computed in Section 3 can only be determined explicitly (by our results) if the support varieties of simple G-modules over $G_{(1)}$ are known explicitly, which is in general not the case. However, Drupieski et al. have in recent work [2] made such calculations for simple, simply-connected G, if one assumes that G is at least as large as the Coxeter number of G and that Lusztig's character formula holds for all restricted dominant weights.

The results in this paper rely most heavily on the work of Suslin et al. in [12,13]. In particular, all of our statements of support varieties are given in terms of varieties of 1-parameter subgroups, which the aforementioned papers prove to be homeomorphic to cohomologically defined support varieties. Moreover, the intuition behind our results for simple modules came from the calculations made in [13, 6.10] for Frobenius kernels of SL_2 . We also use in an essential way the analysis and results of Carlson et al. in [1], and that of Friedlander in [3], both of which appear in the proof of Proposition 3.1. Finally, the results of Jantzen in [8], and the results and observations of Nakano et al. in [10] are critical to obtaining the calculations found in Section 4, where we compute the support variety of a block of $Dist(G_{(r)})$.

1. Preliminaries

We will assume throughout that k is an algebraically closed field of characteristic p > 0.

1.1. Representations of G

By a "classical" simple algebraic group, we shall mean that G is one of the groups SL_n , SO_n , or Sp_{2n} (thus excluding the simply-connected groups of types B and D). When viewing G as a subgroup of some GL_n , we will always assume this embedding is the "natural" one associated to G.

E-mail address: paul.sobaje@unimelb.edu.au.

^{*} Tel.: +61 401769982.

Let T be a maximal split torus of G with character group X(T), let Φ be the root system for G with respect to T, and fix a set of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_\ell\}$. Denote by Φ^+ the set of positive roots with respect to Π , and let B^+ and B denote the Borel subgroups corresponding to Φ^+ and $-\Phi^+$, with their unipotent radicals denoted as U^+ , U respectively. The Weyl group of Φ will be denoted W, and the dot action of $W \in W$ on $X \in X(T)$ is defined by $X \circ X = X(T) \circ X \circ X = X($

We let $\alpha^{\vee} = 2\alpha/\langle \alpha, \alpha \rangle$ for all roots α . The dominant integral weights of X(T) are then given by

$$X(T)_{+} := \{\lambda \in X(T) \mid 0 \le \langle \lambda, \alpha_{i}^{\vee} \rangle, 1 \le i \le \ell \}.$$

The set of fundamental dominant weights, $\{\omega_1, \ldots, \omega_\ell\}$, is defined by $\langle \omega_i, \alpha_j^\vee \rangle = \delta_{ij}$. For each $\lambda \in X(T)_+$, we denote by $L(\lambda)$ the unique simple G-module of highest weight λ . It is the socle of the induced module $H^0(\lambda) := Ind_B^G(k_\lambda)$, where k_λ is the simple one-dimensional B-module of weight λ . The morphism $F: G \to G$ is the standard Frobenius morphism on GL_n restricted to G, and $G_{(r)} \subseteq G$ is the kernel of F^r . For a G-module G, we denote by G^r the module which arises from pulling back G^r via G^r . The set of G^r -restricted weights of G^r is given by

$$X_r(T) := \{\lambda \in X(T) \mid 0 \le \langle \lambda, \alpha_i^{\vee} \rangle < p^r, 1 \le i \le \ell \}.$$

As shown in [7, II.3], if $\lambda \in X_r(T)$, then $L(\lambda)$ remains simple upon restriction from G to $G_{(r)}$. Moreover, for G simply-connected, the set

$$\{L(\lambda) \mid \lambda \in X_r(T)\},\$$

is a complete set of pairwise non-isomorphic simple $G_{(r)}$ -modules.

1.2. Distribution algebras

If H is any affine group scheme, with coordinate algebra k[H], and I_{ϵ} the augmentation ideal of k[H], then the distribution algebra of H, Dist(H), is defined by

$$Dist(H) = \{ f \in Hom_k(k[H], k) \mid f(I_{\epsilon}^n) = 0, \text{ for some } n \ge 1 \}.$$

It follows that $Dist(H_{(r)}) \subseteq Dist(H_{(r+1)})$, and $Dist(H) = \bigcup_{r \geq 1} Dist(H_{(r)})$ (see [7, I.9] for more on Frobenius kernels of arbitrary affine group schemes). For a morphism of affine group schemes $\phi: H_1 \to H_2$, we denote by $d\phi: Dist(H_1) \to Dist(H_2)$ the induced map of algebras.

Of particular importance will be the structure of the algebra $Dist(\mathbb{G}_a)$. In this case, we have $k[\mathbb{G}_a] \cong k[t]$, and $Dist(\mathbb{G}_a)$ is spanned by the elements $(\frac{d}{dt})^{(j)}$, where

$$\left(\frac{d}{dt}\right)^{(j)}(t^i)=\delta_{ij}.$$

If we set $u_j = (\frac{d}{dt})^{(p^j)}$, and if m is an integer with p-adic expansion $m = m_0 + m_1 p + \cdots + m_q p^q$, then

$$\left(\frac{d}{dt}\right)^{(m)} = \frac{u_0^{m_0} \cdots u_q^{m_q}}{m_0! \cdots m_q!}.$$

Therefore $Dist(\mathbb{G}_a)$ is generated as an algebra over k by the set $\{u_j\}_{j\geq 0}$, while $Dist(\mathbb{G}_{a(r)})$ is generated by the subset where j < r.

With F^i denoting the i-th iterate of the Frobenius morphism as above, we have that the differential $dF^i: Dist(\mathbb{G}_a) \to Dist(\mathbb{G}_a)$ is given by

$$dF^{i}(u_{j}) = \begin{cases} u_{j-i} & \text{if } j \geq i \\ 0 & \text{otherwise.} \end{cases}$$

Let $\delta: \mathbb{G}_a \to \mathbb{G}_a \times \mathbb{G}_a$ be the morphism which sends g to (g,g), for all $g \in \mathbb{G}_a(A)$, and for all commutative k-algebras A. Then the differential of δ is the co-multiplication of $Dist(\mathbb{G}_a)$ (see [7, I.7.4]), so we will write $d\delta$ as $\Delta'_{\mathbb{G}_a}$. It is not hard to show that $\Delta'_{\mathbb{G}_a}: Dist(\mathbb{G}_a) \to Dist(\mathbb{G}_a) \otimes Dist(\mathbb{G}_a)$, is given by

$$\Delta'_{\mathbb{G}_a}\left(\left(\frac{d}{dt}\right)^{(n)}\right) = \sum_{i+j=n} \left(\frac{d}{dt}\right)^{(i)} \otimes \left(\frac{d}{dt}\right)^{(j)}.$$

1.3. Support varieties

We recall that the Frobenius kernel $H_{(r)}$ has finite dimensional coordinate algebra $k[H_{(r)}]$, and thus is a *finite group scheme*. By Friedlander and Suslin [5], we have then that the algebra

Download English Version:

https://daneshyari.com/en/article/4597037

Download Persian Version:

https://daneshyari.com/article/4597037

<u>Daneshyari.com</u>