ELSEVIER

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Motivic cohomology of the simplicial motive of a Rost variety

Alexander Merkurjev^{a,*}, Andrei Suslin^b

^a Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA ^b Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2370, USA

ARTICLE INFO

Article history: Received 9 October 2009 Received in revised form 31 December 2009 Available online 21 February 2010 Communicated by E.M. Friedlander

MSC: Primary: 14F42 Secondary: 11S25; 19D50

1. Motivic cohomology of \mathfrak{X}_{θ}

1.1. Introduction

Let *l* be a prime integer, *F* a field of characteristic different from *l*. The Galois cohomology group $H_{et}^1(F, \mu_l)$, where μ_l is the Galois module of all *l*th roots of unity, is canonically isomorphic to the factor group $F^{\times}/F^{\times l}$. We write (*a*) for the class in $H_{et}^1(F, \mu_l)$ corresponding to an element $a \in F^{\times}$. Let $a_1, \ldots, a_{n-1} \in F^{\times}$ for some $n \ge 1$ and $\chi \in H_{et}^1(F, \mathbb{Z}/l\mathbb{Z})$. We consider the *n*-tuple of 1-dimensional cohomology classes

 $\theta = (\chi, (a_1), \ldots, (a_{n-1})).$

Abusing notation we shall also write θ for the cup-product $\chi \cup (a_1) \cup \cdots \cup (a_{n-1})$ in $H^n_{et}(F, \mu_l^{\otimes (n-1)})$ and call this element a symbol.

Note that if $\mu_l \subset F^{\times}$, the choice of a primitive *l*th root of unity identifies $\mathbb{Z}/l\mathbb{Z}$ with μ_l and, therefore, χ with (a_0) for some $a_0 \in F^{\times}$. Thus, θ is given by the *n*-tuple $(a_0, a_1, \ldots, a_{n-1})$ of elements in F^{\times} .

A Rost variety for θ is a smooth projective variety X_{θ} over F satisfying the conditions given in [20, Def. 1.1] or [3, Def. 0.5].

Example 1.1 (*See* [20]). (1) If n = 1, then $X_{\theta} = \text{Spec}(L)$, where L/F is a cyclic field extension of degree l splitting θ , is a Rost variety for θ .

(2) If n = 2, the Severi–Brauer variety $X_{\theta} = SB(A)$ of a central simple *F*-algebra *A* of dimension l^2 with the class θ in $H^2(F, \mu_l) \subset Br(F)$ is a Rost variety for θ .

An inductive process given in [13] allows us to construct a Rost variety for any θ . Denote further by \mathfrak{X}_{θ} the Čech simplicial scheme $\check{C}(\mathfrak{X}_{\theta})$ of X_{θ} (see [17, Appendix B]) and by $M(\mathfrak{X}_{\theta})$ the motive of \mathfrak{X}_{θ} in the triangulated category **DM**(F, \mathbb{Z}) (see [6]).

* Corresponding author. E-mail addresses: merkurev@math.ucla.edu (A. Merkurjev), suslin@math.northwestern.edu (A. Suslin).

ABSTRACT

We compute the motivic cohomology groups of the simplicial motive X_{θ} of a Rost variety for an *n*-symbol θ in Galois cohomology of a field. As an application we compute the kernel and cokernel of multiplication by θ in Galois cohomology. We also show that the reduced norm map on K_2 of a division algebra of square-free degree is injective.

© 2010 Elsevier B.V. All rights reserved.

^{0022-4049/\$ –} see front matter s 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2010.02.006

The motive of \mathfrak{X}_{θ} in **DM**(F, $\mathbb{Z}_{(l)}$) is independent of the choice of the Rost variety X_{θ} ([16, Section 5]). If $\theta = 0$, then $\mathfrak{X}_{\theta} = \mathbb{Z}$, so in general, \mathfrak{X}_{θ} is a "twisted form" of \mathbb{Z} . We write $H^{p,q}(\mathfrak{X}_{\theta}, \mathbb{Z})$ for the motivic cohomology group $H^{p,q}(M(\mathfrak{X}_{\theta}), \mathbb{Z})$.

The triviality of the motivic cohomology group $H^{n+1,n}(\mathcal{X}_{\theta}, \mathbb{Z})$ is the essential step in the proof of Bloch–Kato Conjecture (see [16, Prop. 6.11]). In this paper we compute the motivic cohomology $H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ for all p and q (Theorem 1.15).

In the second part of the paper some applications are given. We compute the kernel and cokernel of multiplication by θ in Galois cohomology. We also show that the reduced norm map on K_2 of a division algebra of square-free degree is injective.

We use the following notation:

 $K_*(F)$ is the Milnor ring of a field F.

If X is a variety over F, we write $A_0(X, K_p)$ for the cokernel of the residue homomorphism (see [11]):

$$\coprod_{x\in X_{(1)}} K_{p+1}F(x) \to \coprod_{x\in X_{(0)}} K_pF(x),$$

where $X_{(i)}$ is the set of all points of X of dimension *i*.

 $n \ge 2 \text{ an integer,}$ $b = (l^{n-1} - 1)/(l - 1) = 1 + l + \dots + l^{n-2},$ $c = (l^n - 1)/(l - 1) = 1 + l + \dots + l^{n-1} = bl + 1 = b + l^{n-1},$ $d = l^{n-1} - 1 = b(l - 1) = c - b - 1.$

1.2. The Bloch–Kato Conjecture and the motivic cohomology of X_{θ}

The Bloch-Kato Conjecture asserts that the norm residue homomorphism

 $h_{n,l}: K_n(F)/lK_n(F) \to H^n_{et}(F, \mu_l^{\otimes n}),$

taking the class of a symbol $\{a_0, a_1, \ldots, a_{n-1}\}$ to the cup-product $(a_0) \cup (a_1) \cup \cdots \cup (a_{n-1})$, is an isomorphism. This conjecture was proved in [16] (see also [3,13,19–21]). In view of [14], the natural maps

$$H^{p,q}(Y,\mathbb{Z}) \to H^{p,q}_{et}(Y,\mathbb{Z})$$

are isomorphisms for a smooth projective variety Y over F and $p \le q + 1$. Moreover, the natural map

$$H^{p,q}(\mathcal{X}_{\theta},\mathbb{Z}) \to H^{p,q}_{et}(\mathcal{X}_{\theta},\mathbb{Z})$$
(1)

is an isomorphism if $p \le q + 1$. By [17, Lemma 7.3],

$$H_{et}^{p,q}(\mathfrak{X}_{\theta},\mathbb{Z}) \simeq H_{et}^{p,q}(F,\mathbb{Z})$$
⁽²⁾

for all *p* and *q*.

For every $\mathcal{N} \in \mathbf{DM}(F, \mathbb{Z})$ and every $\alpha \in H^{p,q}(\mathcal{N}, \mathbb{Z})$ the order of α is the integer $\operatorname{ord}(\alpha) = p - q - 1$. The subgroup of $H^{*,*}(\mathcal{N}, \mathbb{Z})$ of elements of non-negative (respectively, non-positive) order will be denoted by $H^{*,*}(\mathcal{N}, \mathbb{Z})^{\geq 0}$ (respectively, $H^{*,*}(\mathcal{N}, \mathbb{Z})^{\leq 0}$).

1.3. The motive $\widetilde{\mathfrak{X}}_{\theta}$

The motive $\widetilde{\mathfrak{X}}_{ heta}$ is defined by the exact triangle

$$\widetilde{X}_{\theta} \to M(X_{\theta}) \to \mathbb{Z} \to \widetilde{X}_{\theta}[1]$$
 (3)

in **DM**(F, \mathbb{Z}). Note that the motive \widetilde{X}_{θ} differs by a shift from the one defined in [17]. It follows from (1) and (2) that

$$H^{p,q}(\mathfrak{X}_{\theta},\mathbb{Z}) \simeq H^{p,q}_{et}(\mathfrak{X}_{\theta},\mathbb{Z}) \simeq H^{p,q}_{et}(F,\mathbb{Z}) \simeq H^{p,q}(F,\mathbb{Z})$$

$$\tag{4}$$

if $p \le q + 1$. As $H^{p,q}(F, \mathbb{Z}) = 0$ when p > q, the exact triangle (3) yields:

Proposition 1.2. There are canonical isomorphisms:

$$\begin{split} & H^{*,*}(\mathfrak{X}_{\theta},\mathbb{Z})^{\geq 0} \simeq H^{*,*}(\mathfrak{X}_{\theta},\mathbb{Z})^{\geq 0} \\ & H^{*,*}(\mathfrak{X}_{\theta},\mathbb{Z})^{\leq 0} \simeq H^{*,*}(F,\mathbb{Z})^{\leq 0}, \\ & H^{*,*}(\widetilde{\mathfrak{X}}_{\theta},\mathbb{Z})^{\leq 0} = 0. \end{split}$$

Download English Version:

https://daneshyari.com/en/article/4597089

Download Persian Version:

https://daneshyari.com/article/4597089

Daneshyari.com