Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/jpaa)

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Projective modules over smooth, affine varieties over Archimedean real closed fields

S.M. Bhatwadekar [∗](#page-0-0) , Sarang Sane

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

a b s t r a c t

a r t i c l e i n f o

Article history: Received 2 October 2008 Received in revised form 2 January 2009 Available online 9 March 2009 Communicated by R. Parimala

MSC: 13C10 14P10

1. Introduction

real numbers. Let *P* be a projective *A*-module of rank *n* such that its *n*th Chern class $C_n(P) \in \text{CH}_0(X)$ is zero. In this set-up, Bhatwadekar–Das–Mandal showed (amongst many other results) that $P \simeq A \oplus Q$ in the case that either *n* is odd or the topological space *X*(R) of real points of *X* does not have a compact, connected component. In this paper, we prove that similar results hold for smooth, affine varieties over an Archimedean real closed field **R**.

Let $X = \text{Spec}(A)$ be a smooth, affine variety of dimension $n > 2$ over the field R of

© 2009 Elsevier B.V. All rights reserved.

Let $X = \text{Spec}(A)$ be a smooth affine variety of dimension $n > 2$ over a field k and let P be a projective A-module of rank n. It is well known that in general *P* may not split off a free summand of rank one. Hence, it is of interest to find sufficient conditions for this to happen. When *k* is an algebraically closed field, a result of Murthy [\[1,](#page--1-0) Theorem 3.8] says that if the top Chern class $C_n(P)$ in CH₀(X) is zero, then *P* splits off a free summand of rank one (i.e. *P* \simeq *A* \oplus *Q*). Note that over any base field, the vanishing of the top Chern class is a necessary condition for *P* to split off a free summand of rank one. However, the example of the tangent bundle of an even dimensional sphere shows that this condition is not sufficient. Therefore, it is natural to ask: *under what further conditions* $C_n(P) = 0 \stackrel{?}{\Rightarrow} P \simeq A \oplus Q$. In the case $k = \mathbb{R}$, this question was initially investigated in [\[2\]](#page--1-1) and brought to a satisfactory conclusion in [\[3\]](#page--1-2), e.g. it has been shown (amongst many other results) in [\[3,](#page--1-2) Theorem 4.30] that when *n* is odd, then $C_n(P) = 0$ implies that $P \simeq A \oplus Q$. Moreover it is also shown that in the case *n* is *even,* \wedge ^{*n*}(*P*) $\not\cong K_A$, then $C_n(P) = 0$ is a sufficient condition for *P* to have a free summand of rank one, where K_A denotes the canonical module of *A* over R. In this paper we extend these results to the case when the base field *k* is an Archimedean real closed field. More precisely, we prove:

Theorem 1.1. Let **R** be an Archimedean real closed field. Let $X = \text{Spec}(A)$ be a smooth affine variety of dimension $n > 2$ over **R**. Let X(**R**) denote the **R**-rational points of the variety. Let K denote the canonical module $\wedge^n(S^*_{A/R})$. Let P be a projective A-module *of rank n and let* $\wedge^n(P) = L$. Assume that $C_n(P) = 0$ in CH₀(X). Then $P \simeq A \oplus Q$ in the following cases:

- 1. *X*(**R**) *has no closed and bounded semi-algebraically connected component.*
- 2. For every closed and bounded semi-algebraically connected component W of $X(\mathbf{R})$, $L_W \not\simeq K_W$ where K_W and L_W denote *restriction of (induced) line bundles on X*(**R**) *to W .*
- 3. *n is odd.*

Corresponding author.

E-mail addresses: smb@math.tifr.res.in (S.M. Bhatwadekar), sarang@math.tifr.res.in (Sarang Sane).

^{0022-4049/\$ –} see front matter © 2009 Elsevier B.V. All rights reserved. [doi:10.1016/j.jpaa.2009.02.007](http://dx.doi.org/10.1016/j.jpaa.2009.02.007)

Moreover, if n is even and L is a rank 1 *projective A-module such that there exists a closed and bounded semi-algebraically connected component W of* $X(\mathbf{R})$ *with the property that* $L_W \simeq K_W$ *, then there exists a projective A-module P of rank n such that P* ⊕ *A* \simeq *L* ⊕ *A*^{*n*−1 ⊕ *A* (hence C_{*n*}(*P*) = 0) but *P* does not have a free summand of rank 1.}

Note that when the base field is R, the semi-algebraically connected semi-algebraic components are the connected components of $X(\mathbb{R})$ in the Euclidean topology.

We thank the referee for pointing out an error in the proof of (3.1) in an earlier version and suggesting a way to correct it.

2. Preliminaries

The first part can be looked upon as a quick reference guide to the theory of real closed fields and the topological notions related to them. More details can be found in [\[4\]](#page--1-4).

Definition 2.1. A field **R** is said to be real if it can be ordered in a way such that addition and multiplication are compatible with the ordering. An equivalent definition is that $\sum_{i=1}^n a_i^2 = 0 \Rightarrow a_i = 0$ *Vi*. A real closed field is a real field which has no algebraic extensions which are real, equivalently attaching a root of −1 makes it algebraically closed.

Such fields come with a natural topology based on intervals like in the case of $\mathbb R$. However, under this topology, the field itself is not connected (except in the case of \mathbb{R}).

Definition 2.2. A subset *V* of \mathbb{R}^n is called a basic semi-algebraic set if *V* is of the form

$$
\{x \in \mathbf{R}^n \mid f_i(x) = 0, g_j(x) > 0, 1 \le i \le r, 1 \le j \le s\},\
$$

where $f_i(x), g_j(x) \in \mathbf{R}[X_1, X_2, \ldots, X_n]$. A subset W of \mathbf{R}^n is called a semi-algebraic set if W is a finite union of basic semialgebraic sets.

A semi-algebraic subset W of \mathbf{R}^n is semi-algebraically connected if for every pair of disjoint, closed, semi-algebraic subsets *F*₁ and *F*₂ of *W*, satisfying $F_1 \cup F_2 = W$, either $F_1 = W$ or $F_2 = W$.

Now we quote a result, the proof of which can be found in [\[4,](#page--1-4) Theorem 2.4.4].

Theorem 2.3. *Every semi-algebraic subset W of* **R** *l is the disjoint union of a finite number of semi-algebraically connected semialgebraic subsets* W_1, W_2, \ldots, W_s *which are closed in W. The* W_1, W_2, \ldots, W_s *are called the semi-algebraically connected semi-algebraic components of W .*

Remark 2.4. When the field is R, the semi-algebraically connected semi-algebraic components are same as the connected components by [\[4,](#page--1-4) Theorem 2.4.5].

Let $\mathbf{R} \hookrightarrow \mathbf{R}'$ be real closed fields. Let $X = \text{Spec}(A)$ be a smooth affine variety over **R** and let $X(\mathbf{R})$ denote the set of **R**-rational points of *X*. Let $A' = A \otimes_R \mathbf{R}'$ and let $X' = Spec(A')$ be the corresponding (smooth) affine variety over \mathbf{R}' . Note that, fixing a closed embedding of $X(\bf R)$ in $\bf R^l$ (for suitable *l*), we can regard the topological space $X(\bf R)$ as a subspace of $X(\bf R^{\prime})$. Let W'_1, W'_2, \ldots, W'_s be the semi-algebraically connected semi-algebraic components of $X(\mathbf{R}')$. Let $W_i = W'_i \cap X(\mathbf{R})$. Then, W_1, W_2, \ldots, W_s are precisely the semi-algebraically connected semi-algebraic components of $X(\mathbf{R})$ (for a proof of a more general result see [\[4,](#page--1-4) Proposition 5.3.6]). Note that W'_i is closed and bounded if and only if W_i is closed and bounded.

Now we state the Artin–Lang homomorphism theorem [\[4,](#page--1-4) Thm. 4.1.2].

Theorem 2.5. Let A be a finite type **R**-algebra. If there exists an **R**-algebra homomorphism $\phi: A \to \mathbf{R}'$ into a real closed extension **R**' of **R***, then there exists an* **R**-algebra homomorphism $\psi : A \to \mathbf{R}$.

In particular, if A is an **R**-subalgebra of **R**['], then we get a retraction from A to **R**.

To make the paper self-contained, we define the Euler Class Group. Once again, more details can be obtained in either [\[3\]](#page--1-2) or [\[5\]](#page--1-5).

Definition 2.6. Definition of $E(A, L)$ and $E_0(A, L)$

Let *A* be a ring of dimension $n \geq 2$ and let *L* be a projective *A*-module of rank 1. Write $F = L \oplus A^{n-1}$. Let $J \subset A$ be an ideal of height *n* such that *J*/ J^2 is generated by *n* elements. Two surjections α , β from *F*/*JF* to *J*/ J^2 are said to be related if there exists $\sigma \in SL_{A/J}(F/JF)$ such that $\alpha\sigma = \beta$. Clearly this is an equivalence relation on the set of surjections from F/JF to J/J^2 . Let [α] denote the equivalence class of α. Such an equivalence class [α] is called a *local L*-*orientation* of *J*. By abuse of notation, we shall identify an equivalence class [α] with α . A local *L*-orientation α is called a global *L*-orientation if α : F/JF \rightarrow J/J² can be lifted to a surjection θ : $F \rightarrow I$.

Let *G* be the free abelian group on the set of pairs (N , ω_N) where N is an M-primary ideal for some maximal ideal M of height *n* such that N/N^2 is generated by *n* elements and ω_N is a local *L*-orientation of N. Now let $J\subset A$ be an ideal of height *n* such that *J*/*J*² is generated by *n* elements and ω_j be a local *L*-orientation of *J*. Let *J* = \cap_i N_i be the (irredundant)

Download English Version:

<https://daneshyari.com/en/article/4597316>

Download Persian Version:

<https://daneshyari.com/article/4597316>

[Daneshyari.com](https://daneshyari.com)