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a b s t r a c t

We use Kazhdan–Lusztig polynomials and subspaces of the polynomial ring C[x1,1, . . . ,
xn,n] to give a new construction of the Kazhdan–Lusztig representations of Sn. This
construction produces exactly the same modules as those which Clausen constructed
using a different basis in [M. Clausen, Multivariate polynomials, standard tableaux, and
representations of symmetric groups, J. Symbolic Comput. (11), 5-6 (1991) 483–522.
Invariant-theoretic algorithms in geometry (Minneapolis,MN, 1987)], and does not employ
the Kazhdan–Lusztig preorders. We show that the two resulting matrix representations
are related by a unitriangular transition matrix. This provides a C[x1,1, . . . , xn,n]-analog
of results due to Garsia and McLarnan, and McDonough and Pallikaros, who related the
Kazhdan–Lusztig representations to Young’s natural representations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In 1979, Kazhdan and Lusztig [1] introduced a family of irreducible modules for Coxeter groups and related Hecke
algebras. The defining bases of these modules and corresponding matrix representations have many fascinating properties.
Important steps in the construction of the Kazhdan–Lusztig modules are the computation of certain polynomials in
N[q] known as Kazhdan–Lusztig polynomials, and the description of preorders on Coxeter group elements known as the
Kazhdan–Lusztig preorders. These two tasks have become interesting research topics in their own right. For even the simplest
case of a Coxeter group and corresponding Hecke algebra, the symmetric group Sn and type-A Hecke algebra Hn(q), the
Kazhdan–Lusztig polynomials and preorders are somewhat poorly understood. (See, e.g., [2,3] and the references listed
there.) These difficulties have led authors to study irreducibleSn-representations indexed by partitions λ of n and to search
for a connection between the matrices {Xλ1 (w) | w ∈ Sn} of the Kazhdan–Lusztig representations and those of other more
elementary representations.
One well-known family of elementary Sn-representations is that of Young’s natural representations. (See [4].) The

traditional construction of natural representations employs a module defined in terms of a basis of combinatorial objects
called polytabloids. A second family of elementarySn-representations is that of Clausen’s bideterminant representations [5].
Clausen defined these in terms of subspaces of the polynomial ringC[x] = C[x1,1, . . . , xn,n] and bases of polynomials called
bideterminantswhich had appeared earlier in the work of Mead [6], Désarménien–Kung–Rota [7], and others.
Garsia and McLarnan [8] and McDonough and Pallikaros [9] described the connection between matrices {Xλ2 (w) | w ∈

Sn} of each natural representation and those of the corresponding Kazhdan–Lusztig representation as conjugation by a
unitriangular matrix B = B(λ),

Xλ1 (w) = B
−1Xλ2 (w)B, for allw ∈ Sn. (1.1)
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The former authors used properties of the Kazhdan–Lusztig and natural modules to solve Eq. (1.1) for B. The latter authors
proved (1.1) by considering a third family of Sn-modules which are subspaces of CSn. (More precisely, they worked
with representations and subspaces of Hn(q).) Specifically, they showed that each such module has a polytabloid-inspired
basis which yields Young’s natural representation and a Kazhdan–Lusztig-inspired basis which yields the Kazhdan–Lusztig
representation. Thus B is a transition matrix which relates the two bases. Moreover, this alternative construction of the
Kazhdan–Lusztig representations does not rely upon preorders. (See also [10, Rmk. 2.3(i)], [11, Sec. 5] for related earlier
constructions of preorder-avoiding modules.)
Proving results analogous to those above, we will describe the connection between the matrices {Xλ3 (w) | w ∈ Sn}

of each bideterminant representation and those of the corresponding Kazhdan–Lusztig representation as conjugation by
a unitriangular matrix. We will accomplish this by giving a new construction of the Kazhdan–Lusztig representations.
Specifically, we will use the second author’s formulation [12, Thm. 2.1] of the dual canonical basis of C[x] to define a second
basis of Clausen’s bideterminant module, and will show that this basis produces the Kazhdan–Lusztig representations. Thus
our unitriangular matrix A = A(λ) defined by the equations

Xλ1 (w) = A
−1Xλ3 (w)A, for allw ∈ Sn (1.2)

is a transition matrix relating the bideterminant and dual canonical bases of the bideterminant module. Like the
McDonough–Pallikaros construction, our new construction of the Kazhdan–Lusztig representations does not rely upon
preorders. (See also [13] for an earlier appearance of the transition matrix A, and [14], [15] for previous related work on
the dual canonical basis.)
In Sections 2–3, we review basic definitions related to the symmetric group, Hecke algebra, and Kazhdan–Lusztig

modules. In Section 4 we review definitions related to the polynomial ring C[x] and a particular n!-dimensional subspace of
C[x] called the immanant space. We recall the definition of the bideterminant basis of the immanant space and Clausen’s use
of this basis to construct irreducibleSn-modules [5]. In Section 5 we review basic definitions related to a noncommutative
analogA(x; q) of C[x], and a certain immanant subspace of this ring. We then use the basis of Kazhdan–Lusztig immanants
introduced in [14] to give a new construction of the Kazhdan–Lusztig representations of Hn(q). Our modules are quotients
of the immanant space of A(x; q), and like the original Kazhdan–Lusztig modules, they rely upon the Kazhdan–Lusztig
preorders.
In Section 6, we specialize our new Hn(q)-modules at q

1
2 = 1 to obtainSn-modules which are subspaces of C[x1,1, . . . ,

xn,n]. Borrowing ideas from Clausen, and applying vanishing properties of Kazhdan–Lusztig immanants obtained in [13],
we then modify our specialized modules to eliminate all quotients. This leads to our main result that this last family of
Sn-modules gives a new, preorder-free construction of the Kazhdan–Lusztig representations of Sn. We finish by showing
that the relationship between the bideterminant and Kazhdan–Lusztig immanant bases studied in [13, Sec. 5] leads to
unitriangular transition matrices relating Clausen’s irreducible representations ofSn to those of Kazhdan and Lusztig.

2. The symmetric group, tableaux, and partial orders

The standard presentation of the symmetric groupSn is given by generators s1, . . . , sn−1 and relations

s2i = 1, for i = 1, . . . , n− 1,
sisjsi = sjsisj, if |i− j| = 1,
sisj = sjsi, if |i− j| ≥ 2.

(2.1)

We letSn act on rearrangements of the letters [n] = {1, . . . , n} by
si ◦ v1 · · · vn =

def
v1 · · · vi−1vi+1vivi+2 · · · vn, (2.2)

and we define the one-line notation of a permutationw = si1 · · · si` ∈ Sn by

w1 · · ·wn =
def
si1 ◦ (· · · (si` ◦ (1 · · · n)) · · ·). (2.3)

It is well known that this one-line notation does not depend upon the particular expression si1 · · · si` forw. We say that such
an expression is reduced if ` is as small as possible. We then call ` = `(w) the length ofw.
We define the Bruhat order on Sn by v ≤ w if some (equivalently every) reduced expression for w contains a reduced

expression for v as a subword. (See [16] for more information). We call a generator s a left ascent for a permutation v if
we have sv > v, and a left descent otherwise. Right ascents and descents are defined analogously. We denote the unique
maximal element in the Bruhat order by w0. This permutation has one-line notation n(n − 1) · · · 21. It is well known that
the maps v 7→ w0vw0 and v 7→ v−1 induce automorphisms of the Bruhat order, while the maps v 7→ vw0 and v 7→ w0v
induce antiautomorphisms. Thus we have

v ≤ w⇔ v−1 ≤ w−1 ⇔ w0vw0 ≤ w0ww0 ⇔ ww0 ≤ vw0 ⇔ w0w ≤ w0v. (2.4)
A vector space V on whichSn acts as a group of linear transformations is called anSn-module. Any fixed basis for V then

yields a representation of Sn as a group of matrices. Important Sn-modules and Sn-representations termed irreducible are
indexed by weakly decreasing sequences λ = (λ1, . . . , λk) of positive integers which sum to n. (See, e.g., [4].) We call such
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