
Booting, browsing and streaming time profiling, and bottleneck
analysis on android-based systems

Ying-Dar Lin a, Cheng-Yuan Ho b, Yuan-Cheng Lai c,n, Tzu-Hsiung Du a, Shun-Lee Chang a

a Department of Computer Science, National Chiao Tung University, Hsinchu County 300, Taiwan
b Information and Communications Technology Lab, Microelectronics and Information Systems Research Center, National Chiao Tung University,

Hsinchu County 300, Taiwan
c Department of Information Management, National Taiwan University of Science and Technology, Taipei County 106, Taiwan

a r t i c l e i n f o

Article history:

Received 17 July 2012

Received in revised form

27 January 2013

Accepted 17 February 2013
Available online 4 March 2013

Keywords:

Android

Booting

Browsing

Streaming

Time profiling

a b s t r a c t

Android-based systems perform slowly in three scenarios: booting, browsing, and streaming. Time

profiling on Android devices involves three unique constraints: (1) the execution flow of a scenario

invokes multiple software layers, (2) these software layers are implemented in different programming

languages, and (3) log space is limited. To compensate for the first and second constraints, we assumed

a staged approach using different profiling tools applied to different layers and programming

languages. As for the last constraint and to avoid generating enormous quantities of irrelevant log

data, we began profiling scenarios from an individual module, and then iteratively profiled an increased

number of modules and layers, and finally consolidated the logs from different layers to identify

bottlenecks. Because of this iteration, we called this approach a staged iterative instrumentation

approach. To analyze the time required to boot the devices, we conducted experiments using off-the-

shelf Android products. We determined that 72% of the booting time was spent initializing the user-

space environment, with 44.4% and 39.2% required to start Android services and managers, and preload

Java classes and resources, respectively. Results from analyzing browsing performance indicate that

networking is the most significant factor, accounting for at least 90% of the delay in browsing. With

regard to online streaming, networking and decoding technologies are two most important factors

occupying 77% of the time required to prepare a 22 MB video file over a Wi-Fi connection. Furthermore,

the overhead of this approach is low. For example, the overhead of CPU loading is about 5% in the

browsing scenario. We believe that this proposed approach to time profiling represents a major step in

the optimization and future development of Android-based devices.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Devices such as Smartphones, set-top boxes, and netbooks
provide users with the ability to access the Internet at anytime,
from anywhere. Among these Internet connectable devices, Smart-
phones operating under Android, an open source platform devel-
oped from Linux in 2009, are expected to garner the most attention
in coming years. Designing a device on the Android operating
system reduces licensing fees, and developers benefit from the
ability to develop new features and test their innovations in an
open source environment (Pieterse and Olivier, 2012). However,
Android-based devices suffer from poor performance in three
areas: booting, browsing, and streaming. Boot-up time is the first
perception users have when trying a new Smartphone, and
browsing and streaming are two usage scenarios commonly

encountered by Smartphone subscribers (Comscore.com, 2008).
We compared the time spent booting and browsing using popular
off-the-shelf products. Although all of these products have similar
hardware capabilities, the execution on Android-based products
takes much longer than similar applications on iPhones. Previous
researchers have worked intensively on improving the perfor-
mance in these three areas (Singh et al., 2011; Zhao et al., 2011;
Trestian et al., 2012), and all of these studies have shared three
common procedures. First, profiling tools were used to trace the
flow of execution and the running time of targeted tasks. Second,
the flow of execution was redesigned to reduce the time required
to perform the three tasks. Finally, the improvement in perfor-
mance was evaluated by profiling the system again. Clearly,
profiling tools play an important role in the enhancement of
performance. Profiling tools can be categorized into two types:
instrumentation and sampling techniques (Ghoroghi and Alinaghi,
http://www.docstoc.com/docs/7671023/An-introduction-to-profi
ling-mechanisms-and-Linux-profilers; Patel and Rajawat, 2011).
Instrumentation techniques, such as debug classes (Yoon, 2012;

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jnca.2013.02.024

n Corresponding author. Tel.: þ886 2 27376794; fax: þ886 2 27376777.

E-mail address: laiyc@cs.ntust.edu.tw (Y.-C. Lai).

Journal of Network and Computer Applications 36 (2013) 1208–1218

http://www.docstoc.com/docs/7671023/An-introduction-to-profiling-mechanisms-and-Linux-profilers
http://www.docstoc.com/docs/7671023/An-introduction-to-profiling-mechanisms-and-Linux-profilers
www.elsevier.com/locate/jnca
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2013.02.024
http://dx.doi.org/10.1016/j.jnca.2013.02.024
http://dx.doi.org/10.1016/j.jnca.2013.02.024
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jnca.2013.02.024&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jnca.2013.02.024&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jnca.2013.02.024&domain=pdf
mailto:laiyc@cs.ntust.edu.tw
http://dx.doi.org/10.1016/j.jnca.2013.02.024


Android Developer, http://developer.android.com/reference/
packages.html), log utilities (Yoon, 2012; Android Developer,
http://developer.android.com/reference/packages.html), printk
(Printk Times, http://elinux.org/Printk_Times), Linux Trace Toolkit
Next Generation (LTTng) (Toupin, 2011), and Kernel Function Trace
(KFT) (http://elinux.org/Kernel_Function_Trace) insert profiling
code into the source code of targeted programs, thereby enabling
the profiling results to be collected during execution. On the other
hand, sampling techniques, such as OProfile (Levon, http://oprofile.
sourceforge.net/) and Bootchart (Mahkovec, http://www.bootchart.
org/), collect the process-usage statistics by periodically checking
which program or process is occupying the CPU.

Two difficulties have consistently plagued previous studies.
One problem is the fact that Android is a complex system with
multiple layers, and the characteristics of each profiling tool limit
it to a specific layer or layers within the software, as explained in
Section 2. The other problem is that previous researchers have
validated their ideas on development boards or emulators,
despite the fact that hardware is meant to be optimized for
commercial products. This has resulted in discrepancies between
the performance results obtained in the lab and those provided by
off-the-shelf products. Unlike a development board equipped
with sufficient log space, hardware optimization may leave only
limited space on the end-product, e.g., a 64 KB log buffer on the
HTC Dream Smartphone. As a result, profiling tools work very
effectively on development boards but often encounter out-of-
resource problems on the devices for which they were intended.

This work proposes a novel approach to profiling across multi-
ple layers to identify true bottlenecks in booting, browsing, and
streaming using real-world Android based devices. We revealed
common profiling procedures used for arbitrary scenarios and
developed specific profiling procedures for each scenario. All
procedures were validated on off-the-shelf products, to identify
the true bottlenecks of each scenario. This work has the following
major contributions: (1) we propose a staged iterative instrumen-
tation approach, which has properties of limited log space, multi-
layers, and multi-programming-languages; (2) we solve the imple-
mentation issues of this approach for time profiling booting,
browsing, and streaming using real-world Android devices; and
(3) we conduct extensive evaluations in booting, browsing, and
streaming scenarios and identify the bottlenecks in these scenarios.

The remainder of this paper is organized as follows. In Section 2,
we briefly describe the Android architecture and various profiling
tools. In Sections 3 and 4, we present our proposed methodologies
and the means by which the profiling procedures are implemented.
In Section 5, we present the experimental environment and discuss
the profiling results. Finally, in Section 6, we off conclusions and
suggest directions for future research.

2. Background

This section briefly describes the Android architecture and
various profiling tools.

2.1. Android architecture

As shown in Fig. 1, Android software comprises four major
layers, written in three different programming languages: Java,
Cþþ, and C. From basic hardware compliance to the level con-
trolled by users, the four software layers are the Linux kernel,
running environment, application framework, and applications.

1. Linux kernel layer
The Android kernel was derived from the Linux 2.6 kernel, so it
inherits many advantages of Linux such as numerous device

drivers and core operating system functionalities, e.g., memory
management, process management, and networking. In order
to accommodate the tightly constrained resources associated
with embedded devices, Android adds new modules into its
kernel or modifies some parts of the Linux kernel. For example,
Android includes Yet Another Flash File System, 2nd edition
(Yaffs2), an optimized file system for NAND flash, but the
Linux kernel did not. Accordingly, Android can run on many
different types of devices. Moreover, most of the profiling tools
used in common Linux distributions can be adopted for
Android since the entire Linux kernel is written in C program-
ming language.

2. Running environment layer
The running environment layer includes two major compo-
nents, native libraries, and Android runtime. Native libraries
contain a set of C and Cþþ libraries, such as libc and OpenGL/
ES, providing common routines for upper layers. In contrast,
Android runtime is designed specifically for Android to meet
the needs of operating in a resource-limited embedded device.
It includes Dalvik virtual machine (VM) and core libraries.
Dalvik VM is derived from Java VM and written in C, Cþþ, and
Java while the core libraries are written in Java containing
common Java classes for the development of applications.

3. Application framework layer
The application framework layer contains reusable components,
accessible to applications. Components in this layer are written
in Java, Cþþ, and C programming languages. Among the compo-
nents in this layer, activity and window managers are the two
most important. The former manages the life cycle of applica-
tions, while the latter draws graphic elements, such as status
bars, to provide a foreground graphical-user-interface (GUI).
Furthermore, in Android, only one foreground GUI application
may be displayed at a given time, while other running applica-
tions are managed by the activity manger in the background.

4. Applications layer
All user-visible applications on Android can be developed by
anyone, like commercial developers, open-source communities,
and Google, and are written in Java programming language.

2.2. Profiling tools on android

Profiling tools are used to detect hotspots in a program or a set
of programs to alleviate performance issues. A hotspot is a piece
of code that is frequently executed or the execution time of which

Fig. 1. Android architecture.

Y.-D. Lin et al. / Journal of Network and Computer Applications 36 (2013) 1208–1218 1209

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://elinux.org/Printk_Times
http://elinux.org/Kernel_Function_Trace
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://www.bootchart.org/
http://www.bootchart.org/


Download English Version:

https://daneshyari.com/en/article/459745

Download Persian Version:

https://daneshyari.com/article/459745

Daneshyari.com

https://daneshyari.com/en/article/459745
https://daneshyari.com/article/459745
https://daneshyari.com

