

Available online at www.sciencedirect.com

JOURNAL OF PURE AND APPLIED ALGEBRA

Journal of Pure and Applied Algebra 209 (2007) 801–811

www.elsevier.com/locate/jpaa

Explicit K_2 of some finite group rings

Bruce A. Magurn

Miami University, Department of Mathematics and Statistics, Oxford, OH 45056, United States

Received 14 February 2006 Available online 25 September 2006 Communicated by C.A. Weibel

Abstract

We compute K_2 of some finite group algebras of characteristic 2, giving explicit Steinberg or Dennis–Stein symbols as generators. The groups include finite abelian groups of 4-rank at most 1, some direct products involving semidirect product groups, and some small alternating groups.

c 2006 Elsevier B.V. All rights reserved.

MSC: Primary: 19C20; secondary: 19D50; 20C05; 16S34; 16W25

0. Introduction

The K_2 of a ring is the Schur multiplier of the group of elementary matrices over the ring. This work parallels the computations of K_1 in the author's paper "Explicit K_1 of some modular group rings" (see [\[9\]](#page--1-0)). We find explicit symbols generating the *K*² of some finite group algebras using group rings over noncommutative coefficients, an exact sequence of Vorst and Weibel, and hyperelementary induction for *K*2(F[−]). One consequence is the nonvanishing of $K_2(\mathbb{Z}G)$ for the alternating groups *G* of degree 4 and 5. Some computations are given for higher *K*-groups of finite group rings as well.

1. Notation and basic facts

Suppose *R* is a ring (with unit). Let $P(R)$ denote the category of finitely generated projective *R*-modules. In [\[14\]](#page--1-1), Quillen defines $K_n(R)$ to be the homotopy group $\pi_{n+1}(BQP(R), 0)$, where $BQP(R)$ is the classifying space of a category $QP(R)$ constructed from $P(R)$. Any exact functor from $P(R)$ to $P(S)$ induces a homomorphism of groups from $K_n(R)$ to $K_n(S)$; naturally isomorphic functors induce the same homomorphism.

This definition coincides with the "classical" definitions of $K_n(R)$ for $n = 0, 1, 2$. For $n = 0, K_0(R)$ is the Grothendieck group of $P(R)$. Bass defined $K_1(R)$ to be the abelianization $GL(R)^{ab}$ of the infinite dimensional general linear group $GL(R)$. In [\[10\]](#page--1-2), Milnor defined $K_2(R)$ as follows.

The group $E(R) = [GL(R), GL(R)]$ is generated by matrices $e_{ij}(r)$ (for $i \neq j$), which differ from the identity in having *r* in the *i*, *j*-entry. The Steinberg group $St(R)$ has generators called $x_{ij}(r)$ (for $i \neq j, r \in R$) and defining

E-mail address: [magurnba@muohio.edu.](mailto:magurnba@muohio.edu)

^{0022-4049/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. [doi:10.1016/j.jpaa.2006.08.001](http://dx.doi.org/10.1016/j.jpaa.2006.08.001)

relations:

$$
x_{ij}(r)x_{ij}(s) = x_{ij}(r+s),
$$

\n
$$
[x_{ij}(r), x_{kl}(s)] = 1 \text{ if } i \neq l, j \neq k,
$$

\n
$$
[x_{ij}(r), x_{jl}(s)] = x_{il}(rs) \text{ if } i \neq l.
$$

These are modelled on relations among the $e_{ij}(r)$, so that replacing x by *e* defines a surjective group homomorphism $φ$ from *St*(*R*) to $E(R)$. Then $K_2(R)$ is the kernel of $φ$ (and the center of $St(R)$). So $K_2(R)$ measures the non-generic relations among the matrices $e_{ij}(r)$. Further, the extension

$$
0 \longrightarrow K_2(R) \longrightarrow St(R) \stackrel{\phi}{\rightarrow} E(R) \longrightarrow 0
$$

is an initial object in the category of central extensions of $E(R)$; so $K_2(R) \cong H_2(E(R), \mathbb{Z})$.

To describe elements of $K_2(R)$, consider first some elements of $St(R)$ which ϕ takes to some simple matrices in $E(R)$. If $u \in R^*$,

$$
w_{12}(u) = x_{12}(u)x_{21}(-u^{-1})x_{12}(u),
$$

\n
$$
h_{12}(u) = w_{12}(u)w_{12}(-1).
$$

If u and v are commuting units of R , the Steinberg symbol

$$
\{u, v\} = h_{12}(uv)h_{12}(u)^{-1}h_{12}(v)^{-1}
$$

belongs to $K_2(R)$. It is multiplicative in each argument, antisymmetric, and $\{u, v\} = 1$ whenever $u + v$ is 1 or 0 in *R*. If *R* is a commutative semilocal ring, $K_2(R)$ is generated by its Steinberg symbols (see [\[3\]](#page--1-3), Theorem 2.7).

If $f: R \to S$ is a ring homomorphism, there is a group homomorphism $St(f)$ from $St(R)$ to $St(S)$ taking x_i $i(r)$ to $x_{ij}(f(r))$. This restricts to a group homomorphism $K_2(f)$ from $K_2(R)$ to $K_2(S)$ with

$$
K_2(f)(\{u, v\}) = \{f(u), f(v)\}\
$$

for commuting units u and v of R . The Quillen and classical functors K_2 from rings to abelian groups are naturally isomorphic (see [\[15\]](#page--1-4), Corollary 2.6 and Theorem 5.1).

2. Product decompositions

If *R* and *S* are rings, the projection maps induce an isomorphism

$$
K_n(R \times S) \cong K_n(R) \times K_n(S)
$$

for all $n \ge 0$ by [\[14\]](#page--1-1), Section 2. If $m \ge 1$, tensoring with the R , $M_m(R)$ -bimodule R^m is an exact functor and category equivalence from $\mathcal{P}(M_m(R))$ to $\mathcal{P}(R)$, inducing an isomorphism $K_n(M_m(R)) \cong K_n(R)$. If \mathbb{F}_q is a finite field with *q* elements, Quillen proved that $K_n(\mathbb{F}_q)$ is 0 if $n > 0$ is even, and is cyclic of order $q^{(n+1)/2} - 1$ if *n* is odd (see [\[13\]](#page--1-5), Theorem 8).

If $f: R \to S$ is a surjective homomorphism of commutative semilocal rings, Bass showed that $R^* \to S^*$ is surjective (in [\[1\]](#page--1-6), Chapter III, Corollary 2.9); so Steinberg symbols lift, and $K_2(f) : K_2(R) \to K_2(S)$ is surjective. In [\[4\]](#page--1-7), Corollary 4.4(a), Dennis and Stein proved that $K_2(\mathbb{F}_q[x]/(x^m)) = 0$ for all $m \ge 1$. And in [\[2\]](#page--1-8), Dennis, Keating and Stein showed that

$$
K_2(\mathbb{F}_q[\mathbb{Z}_p^r]) \cong \mathbb{Z}_p^{f(r-1)(p^r-1)}
$$

if *p* is prime and $q = p^f$.

Equipped with these tools we can readily observe:

Theorem 1. *If* F *is a finite field of characteristic p and G is a finite group whose Sylow p-subgroup is a cyclic direct factor, then* $K_2(\mathbb{F}G) = 0$ *. For a finite abelian group* G, $K_2(\mathbb{F}G) = 0$ *if and only if the Sylow p-subgroup of* G *is cyclic.*

Download English Version:

<https://daneshyari.com/en/article/4597529>

Download Persian Version:

<https://daneshyari.com/article/4597529>

[Daneshyari.com](https://daneshyari.com/)