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Abstract

Let An be the nth Weyl algebra and Pm be a polynomial algebra in m variables over a field K of characteristic zero. The
following characterization of the algebras {An ⊗ Pm} is proved: an algebra A admits a finite set δ1, . . . , δs of commuting locally
nilpotent derivations with generic kernels and ∩

s
i=1 ker(δi ) = K iff A ' An ⊗ Pm for some n and m with 2n + m = s,

and vice versa. The inversion formula for automorphisms of the algebra An ⊗ Pm (and for P̂m := K [[x1, . . . , xm ]]) has been
found (giving a new inversion formula even for polynomials). Recall that (see [H. Bass, E.H. Connell, D. Wright, The Jacobian
Conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (New Series) 7 (1982) 287–330])
given σ ∈ AutK (Pm), then deg σ−1

≤ (deg σ)m−1 (the proof is algebro-geometric). We extend this result (using [non-holonomic]
D-modules): given σ ∈ AutK (An ⊗ Pm), then deg σ−1

≤ (deg σ)2n+m−1. Any automorphism σ ∈ AutK (Pm) is determined
by its face polynomials [J.H. McKay, S.S.-S. Wang, On the inversion formula for two polynomials in two variables, J. Pure Appl.
Algebra 52 (1988) 102–119], a similar result is proved for σ ∈ AutK (An ⊗ Pm).

One can amalgamate two old open problems (the Jacobian Conjecture and the Dixmier Problem, see [J. Dixmier, Sur les
algèbres de Weyl, Bull. Soc. Math. France 96 (1968) 209–242. [6]] problem 1) into a single question, (JD): is a K -algebra
endomorphism σ : An ⊗ Pm → An ⊗ Pm an algebra automorphism provided σ(Pm) ⊆ Pm and det( ∂σ(xi )

∂x j
) ∈ K ∗

:= K \ {0}?
(Pm = K [x1, . . . , xm ]). It follows immediately from the inversion formula that this question has an affirmative answer iff
both conjectures have (see below) [iff one of the conjectures has a positive answer (as follows from the recent papers [Y.
Tsuchimoto, Endomorphisms of Weyl algebra and p-curvatures, Osaka J. Math. 42(2) (2005) 435–452. [10]] and [A. Belov-Kanel,
M. Kontsevich, The Jacobian conjecture is stably equivalent to the Dixmier Conjecture. ArXiv:math.RA/0512171. [5]])].
c© 2006 Elsevier B.V. All rights reserved.

MSC: 13N10; 13N15; 14R15; 14H37; 16S32

1. Introduction

The following notation will remain fixed throughout the paper (if not stated otherwise): K is a field of characteristic
zero (not necessarily algebraically closed), module means a left module, An = ⊕α∈N2n K xα is the nth Weyl algebra
over K (the commutator [xn+i , x j ] = δi j , 1 ≤ i, j ≤ n, where δi j is the Kronecker delta), Pm = ⊕α∈Nm K xα is
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a polynomial algebra over K (in m variables x2n+1, . . . , x2n+m), A := An ⊗ Pm = ⊕α∈Ns K xα , xα
:= xα1

1 · · · xαs
s ,

s := 2n + m, is the Weyl algebra with polynomial coefficients where x1, . . . , xs are the canonical generators for A
(see below). Any K -algebra automorphism σ ∈ AutK (A) is uniquely determined by the elements x ′

i := σ(xi ) =∑
α∈Ns λαxα , i = 1, . . . , s, λα ∈ K , and so is its inverse, σ−1(xi ) =

∑
α∈Ns λ′

αxα , i = 1, . . . , s.
What is the inversion formula for σ ∈ AutK (An ⊗ Pm)? A natural (shortest) answer to this question is a formula

for the coefficients λ′
α = λ′

α(λβ) like the inversion formula (Cramer’s formula) in the linear polynomial case: given

x ′
= Ax where A = (ai j ) ∈ GLm(K ) (i.e. x ′

i =
∑m

j=1 ai j x j where ai j =
∂x ′

i
∂x j

∈ K ) then

x = A−1x ′
=

(
∂x ′

i
∂x j

)−1

x ′
= (det A)−1(∆i j )x ′

where ∆i j are complementary minors for the matrix (
∂x ′

i
∂x j

); these are linear combinations of products of partial

derivatives ∂x ′
i

∂x j
. So, the inversion formula, in the general situation, is a formula, λ′

α = λ′
α(λβ), where only additions

and multiplications are allowed of ‘partial derivatives’ of the elements x ′ (taking partial derivatives ‘corresponds’
to the operation of taking coefficients of x ′). So, the inversion formula is the most economical formula (the point I
want to make is that x =

1
2 x ′ is the inversion formula for the equation x ′

= 2x but x =
1
2 (x ′

+ 2
∫ 1

0 f (t) dt +

2dimK ExtiB(M, N )) −
∫ 1

0 f (t) dt − dimK ExtiB(M, N ) is ‘not’).
Theorem 2.4 gives the inversion formula for an automorphism σ ∈ AutK (An ⊗ Pm). Theorem 4.3 gives a similar

formula for an automorphism σ ∈ AutK (K [[x1, . . . , xm]]). For another inversion formula for σ ∈ AutK (Pm) see [3,1].
The degree of σ−1 where σ ∈ AutK (An ⊗ Pm). We extend the following result which according to the comment

made on p. 292, [3]: ‘was “well-known” to the classical geometers’ and ‘was communicated to us [H. Bass, E.H.
Connell, D. Wright] by Ofer Gabber . . . . He attributes it to an unrecalled colloquium lecture at Harward’.

Theorem 1.1 ([3,9]). Given σ ∈ AutK (Pm), then deg σ−1
≤ (deg σ)m−1.

The proof of this theorem is algebro-geometric (see [2] for a generalization of this result for certain varieties). We
extend this result (see Section 3).

Theorem 1.2. Given σ ∈ AutK (An ⊗ Pm). Then deg σ−1
≤ (deg σ)2n+m−1.

Non-holonomic D-modules are used in the proof (it looks like this is one of the first instances where non-holonomic
D-modules are of real use).

The algebras {An ⊗ Pm} as a class. Theorem 5.3 gives a characterization of the algebras {An ⊗ Pm} as a class
via commuting sets of locally nilpotent derivations: an algebra A admits a finite set δ1, . . . , δs of commuting locally
nilpotent derivations with generic kernels and ∩

s
i=1 ker(δi ) = K iff A ' An ⊗ Pm for some n and m with 2n +m = s,

and vice versa (the kernels ker(δi ) are generic if the intersections {∩
s
i=1 ker(δi ), ∩i 6= j ker(δi ) | j = 1, . . . , s} are

distinct).
Left and right faces of an automorphism σ ∈ AutK (An ⊗ Pm). Let Pm = K [X1, . . . , Xm] be a polynomial

algebra. For each i = 1, . . . , m, the algebra epimorphism fi : Pm → Pm/(X i ), p 7→ p + (X i ), is called the
face homomorphism. McKay and Wang [8] proved: given σ, τ ∈ AutK (Pm) such that fiσ = fiτ , i = 1, . . . , m,
then σ = τ . So, an automorphism σ ∈ AutK (Pm) is completely determined by its faces { fiσ | i = 1, . . . , m} or,
equivalently, by its face polynomials { fiσ(X j ) | i, j = 1, . . . , m} since each map fiσ is an algebra homomorphism.

For the algebra A := An ⊗ Pm = K 〈x1, . . . , xs〉, s := 2n + m, (where x1, . . . , xs are the canonical generators) we
have left faces li : A → A/Axi , a 7→ a + Axi , and right faces ri : A → A/xi A, a 7→ a + xi A, i = 1, . . . , s. These
are homomorphisms of left and right A-modules rather than homomorphisms of algebras (if xi ∈ Pm then li = ri is
an algebra homomorphism).

Theorem 6.1 states that: given σ, τ ∈ AutK (A) such that riσ = riτ , i = 1, . . . , s then σ = τ (similarly, liσ = liτ ,
i = 1, . . . , s, imply σ = τ ).

2. The inversion formula

In this section, the inversion formula (Theorem 2.4) is given.
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