Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

A-infinity structure on Ext-algebras

D.-M. Lu^a, J.H. Palmieri^{b,*}, Q.-S. Wu^c, J.J. Zhang^b

^a Department of Mathematics, Zhejiang University, Hangzhou 310027, China

^b Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA

^c Institute of Mathematics, Fudan University, Shanghai, 200433, China

ARTICLE INFO

Article history: Received 7 June 2006 Received in revised form 28 May 2007 Available online 9 March 2009 Communicated by E.M. Friedlander

MSC: 16W50 16E45 18G15

ABSTRACT

Let *A* be a connected graded algebra and let *E* denote its Ext-algebra $\bigoplus_i \text{Ext}_A^i(k_A, k_A)$. There is a natural A_∞ -structure on *E*, and we prove that this structure is mainly determined by the relations of *A*. In particular, the coefficients of the A_∞ -products m_n restricted to the tensor powers of $\text{Ext}_A^1(k_A, k_A)$ give the coefficients of the relations of *A*. We also relate the m_n 's to Massey products.

© 2009 Elsevier B.V. All rights reserved.

OURNAL OF PURE AND APPLIED ALGEBRA

0. Introduction

The notions of A_{∞} -algebra and A_{∞} -space were introduced by Stasheff in the 1960s [1]. Since then, more and more theories involving A_{∞} -structures (and its cousins, E_{∞} and L_{∞}) have been discovered in several areas of mathematics and physics. Kontsevich's talk [2] at the ICM 1994 on categorical mirror symmetry has had an influence in developing this subject. The use of A_{∞} -algebras in noncommutative algebra and the representation theory of algebras was introduced by Keller [3–5]. Recently the authors of this paper used the A_{∞} -structure on the Ext-algebra Ext^{*}_A(k, k) to study the non-Koszul Artin-Schelter regular algebras A of global dimension four [6]. The information about the higher multiplications on Ext^{*}_A(k, k) is essential and very effective for this work.

Throughout let *k* be a commutative base field. The definition of an A_{∞} -algebra will be given in Section 1. Roughly speaking, an A_{∞} -algebra is a graded vector space *E* equipped with a sequence of "multiplications" ($m_1, m_2, m_3, ...$): m_1 is a differential, m_2 is the usual product, and the higher m_n 's are homotopies which measure the degree of associativity of m_2 . An associative algebra *E* (concentrated in degree 0) is an A_{∞} -algebra with multiplications $m_n = 0$ for all $n \neq 2$, so sometimes we write an associative algebra as (*E*, m_2). A differential graded (DG) algebra (*E*, *d*) has multiplication m_2 and derivation $m_1 = d$; this makes it into an A_{∞} -algebra with $m_n = 0$ for $n \geq 3$, and so it could be written as (*E*, m_1, m_2).

Let *A* be a connected graded algebra, and let k_A be the right trivial *A*-module $A/A_{\geq 1}$. The Ext-algebra $\bigoplus_{i\geq 0} \operatorname{Ext}_A^i(k_A, k_A)$ of *A* is the homology of a DG algebra, and hence by a theorem of Kadeishvili, it is equipped with an A_{∞} -algebra structure. Note that this A_{∞} -algebra structure is only unique up to A_{∞} -isomorphism, not on the nose. We use $\operatorname{Ext}_A^*(k_A, k_A)$ to denote both the usual associative Ext-algebra and the Ext-algebra with any choice for its A_{∞} -structure. By [7, Ex. 13.4] there is a graded algebra *A* such that the associative algebra $\operatorname{Ext}_A^*(k_A, k_A)$ does not contain enough information to recover the original algebra *A*; on the other hand, the information from the A_{∞} -algebra $\operatorname{Ext}_A^*(k_A, k_A)$ is sufficient to recover *A*. This is the point of Theorem A, and this process of recovering the algebra from its Ext-algebra is one of the main tools used in [6].

* Corresponding author.

E-mail addresses: dmlu@zju.edu.cn (D.-M. Lu), palmieri@math.washington.edu (J.H. Palmieri), qswu@fudan.edu.cn (Q.-S. Wu), zhang@math.washington.edu (J.J. Zhang).

^{0022-4049/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2009.02.006

We need some notation in order to state the theorem. We say that a graded vector space $V = \bigoplus V_i$ is *locally finite* if each V_i is finite-dimensional. We write the graded *k*-linear dual of *V* as $V^{\#}$. As our notation has so far indicated, we use subscripts to indicate the grading on *A* and related vector spaces. Also, the grading on *A* induces a bigrading on Ext. We write the usual, homological, grading with superscripts, and the second, induced, grading with subscripts.

Let $\mathfrak{m} = \bigoplus_{i \ge 1} A_i$ be the augmentation ideal of A. Let $Q = \mathfrak{m}/\mathfrak{m}^2$ be the graded vector space of generators of A. The relations in A naturally sit inside the tensor algebra on Q. In Section 4 we choose a vector space embedding of each graded piece A_s into the tensor algebra on Q: a map

$$A_{s} \hookrightarrow \left(\bigoplus_{m\geq 1} Q^{\otimes m}\right)_{s},$$

which splits the multiplication map, and this choice affects how we choose the minimal generating set of relations. See Lemma 5.2 and the surrounding discussion for more details.

Theorem A. Let A be a connected graded locally finite algebra. Let $Q = \mathfrak{m}/\mathfrak{m}^2$ be the graded vector space of generators of A. Let $R = \bigoplus_{s>2} R_s$ be a minimal graded space of relations of A, with R_s chosen so that

$$R_{s} \subset \bigoplus_{1 \leq i \leq s-1} Q_{i} \otimes A_{s-i} \subset \left(\bigoplus_{m \geq 2} Q^{\otimes m}\right)_{s}.$$

For each $n \ge 2$ and $s \ge 2$, let $i_s : R_s \to (\bigoplus_{m \ge 2} Q^{\otimes m})_s$ be the inclusion map and let i_s^n be the composite

$$R_s \xrightarrow{i_s} \left(\bigoplus_{m \ge 2} \mathbb{Q}^{\otimes m} \right)_s \to (\mathbb{Q}^{\otimes n})_s.$$

Then there is a choice of A_{∞} -algebra structures $(m_2, m_3, m_4, ...)$ on $E = \text{Ext}^*_A(k_A, k_A)$ so that in any degree -s, the multiplication m_n of E restricted to $(E^1)_{-s}^{\otimes n}$ is equal to the map

$$(\mathbf{i}_{s}^{n})^{\#}:\left((E^{1})^{\otimes n}\right)_{-s}=\left((Q^{\otimes n})_{s}\right)^{\#}\longrightarrow R_{s}^{\#}\subset E_{-s}^{2}.$$

In plain English, the multiplication maps m_n on classes in $\text{Ext}_A^1(k_A, k_A)$ are determined by the relations in the algebra A. Note that the space Q of generators need not be finite-dimensional—it only has to be finite-dimensional in each grading. Thus the theorem applies to infinitely generated algebras like the Steenrod algebra.

The authors originally announced the result in the following special case; this was used heavily in [6].

Corollary B (*Keller's* Higher-Multiplication Theorem in the Connected Graded Case). Let A be a connected graded algebra, finitely generated in degree 1. Let $R = \bigoplus_{n \ge 2} R_n$ be a minimal graded space of relations of A, chosen so that $R_n \subset A_1 \otimes A_{n-1} \subset A_1^{\otimes n}$. For each $n \ge 2$, let $i_n : R_n \to A_1^{\otimes n}$ be the inclusion map and let $i_n^{\#}$ be its k-linear dual. Then there is a choice of A_{∞} -algebra structures (m_2, m_3, m_4, \ldots) on $E = \operatorname{Ext}_A^*(k_A, k_A)$ so that the multiplication map m_n of E restricted to $(E^1)^{\otimes n}$ is equal to the map

$$i_n^{\#}: (E^1)^{\otimes n} = (A_1^{\#})^{\otimes n} \longrightarrow R_n^{\#} \subset E^2$$

Keller has the same result for a different class of algebras; indeed, his result was the inspiration for Theorem A. His result applies to algebras the form $k\Delta/I$ where Δ is a finite quiver and I is an admissible ideal of $k\Delta$; this was stated in [8, Proposition 2] without proof. This class of algebras includes those in Corollary B, but since the algebra A in Theorem A need not be finitely generated, that theorem is not a special case of Keller's result. A version of Corollary B was also proved in a recent paper by He and Lu [9] for \mathbb{N} -graded algebras $A = A_0 \oplus A_1 \oplus \cdots$ with $A_0 = k^{\oplus n}$ for some $n \ge 1$, and which are finitely generated by $A_0 \oplus A_1$. Their proof was based on the one here (see [9, page 356]).

Here is an outline of the paper. We review the definitions of A_{∞} -algebras and Adams grading in Section 1. In Section 2 we discuss Kadeishvili's and Merkulov's results about the A_{∞} -structure on the homology of a DG algebra. In Section 3 we use Merkulov's construction to show that the A_{∞} -multiplication maps m_n compute Massey products, up to a sign – see Theorem 3.1 and Corollary A.5 for details. In Section 4 the bar construction is described: the dual of the bar construction is a DG algebra whose homology is Ext, and so leads to an A_{∞} -structure on Ext algebras. Then we give a proof of Theorem A in Section 5, and in Section 6 we give a few examples. Finally, there is an Appendix in which we prove that Merkulov's construction is in some sense ubiquitous among A_{∞} -algebras; this Appendix was inspired by a comment from the referee.

This paper began as an Appendix in [6].

Download English Version:

https://daneshyari.com/en/article/4597776

Download Persian Version:

https://daneshyari.com/article/4597776

Daneshyari.com