

Available online at www.sciencedirect.com

JOURNAL OF PURE AND APPLIED ALGEBRA

Journal of Pure and Applied Algebra 208 (2007) 951-959

www.elsevier.com/locate/jpaa

Deficiency and the geometric invariants of a group (with an appendix by Pascal Schweitzer)

Robert Bieri

Fachbereich Mathematik, Universität Frankfurt, Postfach 111932, 60054 Frankfurt am Main, Germany

Received 27 October 2005; received in revised form 20 February 2006; accepted 27 February 2006 Available online 8 August 2006 Communicated by M. Sapir

Abstract

It is known that the geometric invariants of a group G (which contain information on finiteness properties of certain submonoids and normal subgroups of G) have a description in terms of the vanishing of group homology of G with Novikov-ring-coefficients [see J.-C. Sikorav, Homologie de Novikov associée à une classe de cohomologie réelle de degré un, Thèse Orsay, 1987; R. Bieri, The geometric invariants of a group, in: G.A. Niblo, M.A. Roller (Eds.), Geometric Group Theory, in: London Math. Soc. Lecture Notes Series, vol. 181, Cambridge University Press, Cambridge, 1993; R. Bieri, R. Strebel, Geometric invariants for discrete groups, manuscript-preprint of a monograph (in preparation)], and [R. Bieri, R. Geoghegan, Kernels of actions on non-positively curved spaces, in: P.H. Kropholler, G. Niblo, R. Stöhr (Eds.), Geometry and Cohomology in Group Theory, in: London Math. Soc. Lecture Notes Series, vol. 252, Cambridge University Press, Cambridge, 1998, pp. 24–38]. In a recent paper Kochloukova [D. Kochloukova, Some Novikov rings that are von Neumann finite and knot-like groups (submitted for publication)] uses this to prove a conjecture of E. Rapaport-Strasser on knot-like groups. We extend her approach to establish a rather general relationship between deficiency and the geometric invariants of a group. © 2006 Published by Elsevier B.V.

MSC: 20J05; 20F65

1. Introduction

1.1. Deficiency

If a group G has a finite presentation in terms of d generators subject to r defining relations then the difference d - r satisfies the inequality $d - r \le \mathbb{Z}$ -rank of G/G'. The maximal value of d - r over all finite presentations of G is the *deficiency* def(G) of the group G.

1.2. The geometric invariants

Recall that a group (or a monoid) *G* is of type FP_m , if the trivial *G*-module \mathbb{Z} admits a $\mathbb{Z}G$ -free resolution which is finitely generated in all dimensions $\leq m$. A group *G* is finitely generated if and only if *G* is of type FP_1 ; and *G* finitely

E-mail address: bieri@math-uni-frankfurt.de.

presented implies type FP_2 , but not vice versa. The geometric invariants $\Sigma^m(G; \mathbb{Z})$, introduced in [4] for m = 1 and in [5] for m > 1, are defined when G is a group of type FP_m . For simplicity, let us assume that G is finitely generated. By characters of G we mean homomorphisms $\chi : G \to \mathbb{R}$ into the additive group of the real numbers. For each character χ we consider the submonoid of G,

$$G_{\chi} = \{ g \in G \mid \chi(g) \ge 0 \},\$$

and put

 $\Sigma^m(G; \mathbb{Z}) = \{\chi \mid \text{the submonoid } G_\chi \text{ is of type } FP_m\}.$

Note that the set of characters is a finite dimensional real vector space and that the geometric invariants form a descending chain of conical subsets

 $\operatorname{Hom}(G,\mathbb{R}) = \mathbb{R}^n = \Sigma^0(G;\mathbb{Z}) \supseteq \Sigma^1(G;\mathbb{Z}) \supseteq \Sigma^2(G;\mathbb{Z}) \supseteq \cdots \supseteq \Sigma^m(G;Z).$

1.3. The main result

The main result of this note is

Theorem A. Let G be a finitely presented group.

(a) If Σ¹(G; Z) ≠ {0} then def(G) ≤ 1.
(b) If def(G) = 1 then Σ¹(G; Z) = Σ²(G; Z).
(c) If def(G) = 1 and Σ¹(G; Z) ≠ {0} then G is of cohomological dimension cd(G) ≤ 2.

1.4. Remarks

- (a) The first assertion is already contained in the manuscript [6]. The second assertion is new.
- (b) The idea to prove the theorem was triggered by Kouchlokova's proof of the Rapaport–Strasser Conjecture on knotlike groups [8,9]. In particular, we are extending and using her result on von Neuman finiteness of the Novikov ring of G with respect to a discrete character χ : G → ℝ i.e., a character whose image is discrete in ℝ.

2. Applications

2.1. An immediate application

An immediate application results, as usually, from the fact that the geometric invariants contain full information on the FP_m -type of normal subgroups with Abelian factor group. In fact, one of the main results of [4] and [5] asserts.

Theorem 1. Let G be a group of type FP_m , k an integer with $m \ge k \ge 1$, and N a normal subgroup of G with G/NAbelian. Then N is of type FP_k if and only if the geometric invariant $\Sigma^k(G; \mathbb{Z})$ contains all characters $\chi : G \to \mathbb{R}$ with $\chi(N) = 0$.

Thus, the existence of a finitely generated normal subgroup N with infinite Abelian quotient implies non-vanishing of $\Sigma^1(G; \mathbb{Z})$, and such normal subgroups are of type FP_2 , if the first two geometric invariants coincide. Moreover, by [1] normal subgroups N of type FP_2 in finitely generated groups G with $cd(G) \leq 2$ are known to be free or of finite index. This proves

Corollary B. Let G be a finitely presented group.

- (a) If G contains a finitely generated normal subgroup N with G/N infinite Abelian then def $(G) \leq 1$,
- (b) If def(G) = 1 then every finitely generated normal subgroup N with G/N Abelian is of type FP₂; in fact, if G/N is infinite then N is free of finite rank and $rk_Z(G/N) = 1$.

2.2. Remark

(a) The first assertion of the corollary is contained in the result of Lück [10], asserting the conclusion def $(G) \le 1$ even when the assumption "G/N infinite Abelian" is replaced by "G/N contains an element of infinite order". The second assertion seems to be new.

Download English Version:

https://daneshyari.com/en/article/4597823

Download Persian Version:

https://daneshyari.com/article/4597823

Daneshyari.com