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of finite groups by using the maximal permutizer condition. We also get some results for
when both G/N and N are supersoluble, which implies that G is supersoluble. Our results
unify or generalize some known results.
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1. Introduction

A normalizer of a subgroup plays an important role in the study of finite groups. We say a group satisfies the normalizer
condition if every proper subgroup of a group is strictly smaller than its normalizer. An important and classic result is that
a finite group satisfies the normalizer condition if and only if it is a finite nilpotent group. We also know that G is a finite
nilpotent group if and only if every maximal subgroup M of G is normal in G. We define the maximal normalizer condition
as the normalizer of every maximal subgroup M of G that is equal to G. Then we know that the normalizer and the maximal
normalizer condition are equivalent. This tells us that the normalizer condition is a strong condition.

A natural way to generalize the normalizer condition is to replace the normalizer of a subgroup by its permutizer. The
permutizer of a subgroup H of G is defined to be the subgroup generated by all cyclic subgroups of G that permute with H,
i.e. (x € G|(x)H = H(x)), denoted by P;(H).

In [3], Beidleman and Robinson defined the permutizer condition. A group is said to satisfy the permutizer condition if
every proper subgroup of a group is strictly smaller than its permutizer.

Some authors have obtained some interesting results about the permutizer condition.

Zhang came to the following conclusions in [7]:

(a) If G is a finite soluble group and satisfies the permutizer condition, then
(1) Gissupersoluble if and only if no quotient group of G is isomorphic to S4.
(2) for any odd prime p, G is p-supersoluble.
(3) Q € Syl,(G), then Q < G, and G/Q is supersoluble.
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In [3], the authors proved an important result.
(b) Each finite group G satisfying the permutizer condition is soluable and every chief factor of G has order 4 or a prime.

Later, Xiaolei Liu and Yanming Wang [5] weakened the conditions of (a) and (b); by only considering the permutizers of
almost maximal subgroups, they got the following results:

(1) Suppose Pg(M) = G for any maximal subgroup M of finite group G, then (a) holds.

(2) Suppose Pg(M) > M for any almost maximal subgroup M of G, every chief factor of G has order 4 or a prime.

A proper subgroup M is called an almost maximal subgroup of G if M is a maximal subgroup or |G : M| is a power of a
prime number.

Motivated by the above research, we aim to give some new results on the permutizers of subgroups; some of these unify
or generalize the above results. As a by product, we also get some results about when G/N and N are supersoluble implying
that G is supersoluble.

All groups considered in this paper are finite. G always denotes a finite group, p a prime, 77(G) the set of prime divisors of
the order of group G, S, the symmetric group of degree n, A, the alternating group of degree n and M the core of M in G.

2. Preliminaries

Definition 2.1. A group G is said to satisfy the permutizer condition in G if P;(H) strictly contains H for any subgroup H of G.

Definition 2.2. A group G is said to satisfy the maximal permutizer condition if Pc(M) = G for any maximal subgroup M
of G.

Definition 2.3. Let S be a group. A group G is called S-free if no quotient group of any subgroup of G is isomorphic to S.

Lemma 2.4. Let H be a subgroup of G and N a normal subgroup of G. Then:
(1) Ng(H) < Pg(H).
(2) Poyu(HN/N) = Po(H)N/N.
(3) If N is also a subgroup of H, then Pg/y(H/N) = Pg(H)/N.

Proof. (1) This is evident.

(2) Since P;(H) = (x|x € G, (xYH = H(x)), Pc(H)N/N = (xN|x € G, (xYH = H(x)). Let x be an element of G such that
H(x) = (x)H. Then xN € Pc(H)N/N. We have (HN/N)({x)N/N) = HN{(x)N/N = H{x)N/N = (x)HN/N = ((x)N/N)(HN/N), which
implies xN € P¢/y(HN/N). Hence P¢/y(HN/N) > Pg(H)N/N.

(3) By (2), it suffices to prove Pg/y(H/N) < Pg(H)/N.

Let xN € Pg/y(H/N) such that (H/N)(xN) = (xN)(H/N). Since N < H, it follows that ((x)H)/N = (H({x))/N. Hence (x)H =
H(x). O

Lemma 2.5 ([3, Lemma 3.2]). Let P be a p-group and let N be a nontrivial, elementary abelian normal subgroup of P which has a
complement X in P. If P = (y)X for some element y, then IN| = pif p > 2and [N| < 4if p=2.

Lemma 2.6. G is soluble if G satisfies the maximal permutizer condition.

Proof. Let M be a maximal subgroup of G and P;(M) = G. Then there exists an element x € G\ M such that G = (x)M = M(x),
which implies that M has a cyclic supplement in G. By [1, Theorem 1.1], G is soluble. O

Lemma 2.7 ([4, VI, Theorem 4.7]). Suppose G = G1G,. For any prime p, there exist P, Py, P, such that P = P1P,, where P € Syl,(G),
P; € Sylp(Gi), i= ], 2.

Lemma 2.8. Let H be a subgroup of G such that |G : H| is a w-number. If there is a nilpotent subgroup K of G such that G = HK,
then G = HK,, where K, is a w-Hall subgroup of K.

Proof. Let K = K, K., where K, is a n’-Hall subgroup of K. We can assume that K, > 1. Let K, be a nonidentity Sylow
p-subgroup of K,». Since |G : H| is a r-number, Sylow p-subgroups of H are Sylow p-subgroups of G. On the other hand, by
Lemma 2.7, there exists a Sylow p-subgroup H, of H such that H,K, is a Sylow p-subgroup of G. So H,K, = Hp,, which implies
K, < H, < H. Thus we have K,y < H. Hence G = HK = H(KyK;) = (HKy)Ky = HK;. O

Lemma 2.9 ([6, IX, Theorem 9.3.3]). Suppose 1 = Go < Gy 4 --- < G, = Gis a chief series of G. Then F, = (6., , /61 Cc(Giv1/Gi)
is p-nilpotent, and F,(G) contains all normal p-nilpotent subgroups of G.

Lemma 2.10 ([2, Proposition 2.3]). Let G be a group and N a normal subgroup of G such that G = HN for some subgroup H of G.
Suppose M is a maximal subgroup of G with N < M. Then H N M is a maximal subgroup of H.
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