Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Influence of permutizers of subgroups on the structure of finite groups*

Shouhong Qiao^a, Guohua Qian^{a,b}, Yanming Wang^{c,a,*}

^a School of Math., Zhongshan University, Guangzhou, 510275, China

^b Department of Math., Changshu Institute of Technology, Changshu, Jiangsu, 215500, China

^c Lingnan College, Zhongshan University, Guangzhou, 510275, China

ARTICLE INFO

Article history: Received 6 August 2007 Received in revised form 28 November 2007 Available online 19 May 2008 Communicated by J. Walker

MSC: 20D10 20D15

ABSTRACT

A group *G* is said to satisfy the maximal permutizer condition if the permutizer of any maximal subgroup *M* of *G* in *G*, $P_G(M)$, is *G*. In this paper, we characterize the supersolubility of finite groups by using the maximal permutizer condition. We also get some results for when both *G*/*N* and *N* are supersoluble, which implies that *G* is supersoluble. Our results unify or generalize some known results.

© 2008 Elsevier B.V. All rights reserved.

OURNAL OF PURE AND APPLIED ALGEBRA

1. Introduction

A normalizer of a subgroup plays an important role in the study of finite groups. We say a group satisfies the normalizer condition if every proper subgroup of a group is strictly smaller than its normalizer. An important and classic result is that a finite group satisfies the normalizer condition if and only if it is a finite nilpotent group. We also know that *G* is a finite nilpotent group if and only if every maximal subgroup *M* of *G* is normal in *G*. We define the maximal normalizer condition as the normalizer of every maximal subgroup *M* of *G* that is equal to *G*. Then we know that the normalizer and the maximal normalizer condition.

A natural way to generalize the normalizer condition is to replace the normalizer of a subgroup by its permutizer. The permutizer of a subgroup *H* of *G* is defined to be the subgroup generated by all cyclic subgroups of *G* that permute with *H*, i.e. $\langle x \in G | \langle x \rangle H = H \langle x \rangle \rangle$, denoted by $P_G(H)$.

In [3], Beidleman and Robinson defined the permutizer condition. A group is said to satisfy the permutizer condition if every proper subgroup of a group is strictly smaller than its permutizer.

Some authors have obtained some interesting results about the permutizer condition. Zhang came to the following conclusions in [7]:

(a) If G is a finite soluble group and satisfies the permutizer condition, then

- (1) G is supersoluble if and only if no quotient group of G is isomorphic to S₄.
- (2) for any odd prime p, *G* is p-supersoluble.
- (3) $Q \in Syl_2(G')$, then $Q \leq G$, and G/Q is supersoluble.

 $^{^{\}diamond}$ Project supported by NSF of China 10571181 and NSF of Guangdong.

^{*} Corresponding author. E-mail addresses: qshqsh513@163.com (S. Qiao), ghqian2000@yahoo.com.cn (G. Qian), stswym@mail.sysu.edu.cn (Y. Wang).

^{0022-4049/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2008.03.004

In [3], the authors proved an important result.

(b) Each finite group G satisfying the permutizer condition is soluable and every chief factor of G has order 4 or a prime.

Later, Xiaolei Liu and Yanming Wang [5] weakened the conditions of (a) and (b); by only considering the permutizers of almost maximal subgroups, they got the following results:

(1) Suppose $P_G(M) = G$ for any maximal subgroup M of finite group G, then (a) holds.

(2) Suppose $P_G(M) > M$ for any almost maximal subgroup M of G, every chief factor of G has order 4 or a prime.

A proper subgroup *M* is called an almost maximal subgroup of *G* if *M* is a maximal subgroup or |G : M| is a power of a prime number.

Motivated by the above research, we aim to give some new results on the permutizers of subgroups; some of these unify or generalize the above results. As a by product, we also get some results about when G/N and N are supersoluble implying that G is supersoluble.

All groups considered in this paper are finite. *G* always denotes a finite group, *p* a prime, $\pi(G)$ the set of prime divisors of the order of group *G*, *S*_n the symmetric group of degree *n*, *A*_n the alternating group of degree *n* and *M*_G the core of *M* in *G*.

2. Preliminaries

Definition 2.1. A group G is said to satisfy the permutizer condition in G if $P_G(H)$ strictly contains H for any subgroup H of G.

Definition 2.2. A group *G* is said to satisfy the maximal permutizer condition if $P_G(M) = G$ for any maximal subgroup *M* of *G*.

Definition 2.3. Let S be a group. A group G is called S-free if no quotient group of any subgroup of G is isomorphic to S.

Lemma 2.4. Let H be a subgroup of G and N a normal subgroup of G. Then:

 $(1) N_G(H) \le P_G(H).$

(2) $P_{G/N}(HN/N) \ge P_G(H)N/N$.

(3) If N is also a subgroup of H, then $P_{G/N}(H/N) = P_G(H)/N$.

Proof. (1) This is evident.

(2) Since $P_G(H) = \langle x | x \in G, \langle x \rangle H = H \langle x \rangle \rangle$, $P_G(H)N/N = \langle xN | x \in G, \langle x \rangle H = H \langle x \rangle \rangle$. Let x be an element of G such that $H \langle x \rangle = \langle x \rangle H$. Then $xN \in P_G(H)N/N$. We have $(HN/N)(\langle x \rangle N/N) = HN \langle x \rangle N/N = H \langle x \rangle N/N = \langle x \rangle HN/N = (\langle x \rangle N/N)(HN/N)$, which implies $xN \in P_{G/N}(HN/N)$. Hence $P_{G/N}(HN/N) \ge P_G(H)N/N$.

(3) By (2), it suffices to prove $P_{G/N}(H/N) \le P_G(H)/N$.

Let $xN \in P_{G/N}(H/N)$ such that $(H/N)\langle xN \rangle = \langle xN \rangle (H/N)$. Since $N \leq H$, it follows that $(\langle x \rangle H)/N = (H\langle x \rangle)/N$. Hence $\langle x \rangle H = H\langle x \rangle$. \Box

Lemma 2.5 ([3, Lemma 3.2]). Let P be a p-group and let N be a nontrivial, elementary abelian normal subgroup of P which has a complement X in P. If $P = \langle y \rangle X$ for some element y, then |N| = p if p > 2 and $|N| \le 4$ if p = 2.

Lemma 2.6. *G* is soluble if *G* satisfies the maximal permutizer condition.

Proof. Let *M* be a maximal subgroup of *G* and $P_G(M) = G$. Then there exists an element $x \in G \setminus M$ such that $G = \langle x \rangle M = M \langle x \rangle$, which implies that *M* has a cyclic supplement in *G*. By [1, Theorem 1.1], *G* is soluble.

Lemma 2.7 ([4, VI, Theorem 4.7]). Suppose $G = G_1G_2$. For any prime p, there exist P, P_1 , P_2 such that $P = P_1P_2$, where $P \in Syl_p(G)$, $P_i \in Syl_p(G_i)$, i = 1, 2.

Lemma 2.8. Let *H* be a subgroup of *G* such that |G : H| is a π -number. If there is a nilpotent subgroup *K* of *G* such that G = HK, then $G = HK_{\pi}$, where K_{π} is a π -Hall subgroup of *K*.

Proof. Let $K = K_{\pi'}K_{\pi}$, where $K_{\pi'}$ is a π' -Hall subgroup of K. We can assume that $K_{\pi'} > 1$. Let K_p be a nonidentity Sylow p-subgroup of $K_{\pi'}$. Since |G : H| is a π -number, Sylow p-subgroups of H are Sylow p-subgroups of G. On the other hand, by Lemma 2.7, there exists a Sylow p-subgroup H_p of H such that H_pK_p is a Sylow p-subgroup of G. So $H_pK_p = H_p$, which implies $K_p \le H_p \le H$. Thus we have $K_{\pi'} \le H$. Hence $G = HK = H(K_{\pi'}K_{\pi}) = (HK_{\pi'})K_{\pi} = HK_{\pi}$. \Box

Lemma 2.9 ([6, IX, Theorem 9.3.3]). Suppose $1 = G_0 \leq G_1 \leq \cdots \leq G_s = G$ is a chief series of G. Then $F_p = \bigcap_{p \mid |G_{i+1}/G_i|} C_G(G_{i+1}/G_i)$ is p-nilpotent, and $F_p(G)$ contains all normal p-nilpotent subgroups of G.

Lemma 2.10 ([2, Proposition 2.3]). Let G be a group and N a normal subgroup of G such that G = HN for some subgroup H of G. Suppose M is a maximal subgroup of G with $N \le M$. Then $H \cap M$ is a maximal subgroup of H.

Download English Version:

https://daneshyari.com/en/article/4598049

Download Persian Version:

https://daneshyari.com/article/4598049

Daneshyari.com