Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/apcatb

Photocatalytic activity of Cu²⁺/TiO₂-coated cordierite foam inactivates bacteriophages and *Legionella pneumophila*

Hitoshi Ishiguro^{a,b,*}, Yanyan Yao^{a,b}, Ryuichi Nakano^{a,c}, Masayuki Hara^a, Kayano Sunada^d, Kazuhito Hashimoto^{d,e}, Jitsuo Kajioka^a, Akira Fujishima^{a,f}, Yoshinobu Kubota^{a,b}

^a Kanagawa Academy of Science and Technology, KSP Bldg. West 6F, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan

^b Department of Urology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan

^c Kitasato Research Center for Environment Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0329, Japan

^d Department of Applied Chemistry, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

e Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

^f Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

ARTICLE INFO

Article history: Received 18 April 2012 Received in revised form 27 August 2012 Accepted 9 September 2012 Available online 17 September 2012

Keywords: Bacteriophages Photocatalysis Cu²⁺ TiO₂ Air cleaning filters

1. Introduction

In 2009, a new type of influenza virus, pandemic H1N1, spread around the world [1]. Serious health problems due to other airborne diseases, such as severe acute respiratory syndrome, have also occurred in the past [2]. Furthermore, bacteria have become increasingly resistant to drug treatment, as in the examples of the multidrug-resistant bacteria *Pseudomonas aeruginosa* and *Acinetobacter baumannii* [3,4]. These infectious diseases are a threat to human health, and indeed, outbreaks and serious clinical cases have occurred. Therefore, new antiviral and antibacterial materials or methods are urgently required.

Three infection pathways of viruses and bacteria have been defined: contact, droplets, and airborne transmission [5–7]. Contact transmission is caused by direct or indirect contact with polluted fomites. Droplet transmission occurs by direct sprays from

E-mail address: h1496@med.yokohama-cu.ac.jp (H. Ishiguro).

ABSTRACT

We investigated the antiviral activity of TiO_2 -coated cordierite foam used in air cleaners, as well as the evaluation methodology. Furthermore, we developed Cu^{2+}/TiO_2 -coated cordierite foam and investigated the reduction in viral infection ratio. The method for evaluation of antibacterial activity of TiO_2 -coated cordierite foam could also be applied to evaluation of antiviral activity. We showed that Cu^{2+}/TiO_2 -coated cordierite foam reduced the viral infection ratio to a greater extent than TiO_2 -coated cordierite foam. Our findings suggest that the infection risk by polluted air could be decreased using Cu^{2+}/TiO_2 -coated cordierite foam in air cleaners.

© 2012 Elsevier B.V. All rights reserved.

coughing or sneezing by infected patients. Airborne transmission is spread across considerable distances in the form of polluted droplet nuclei. For the effective reduction of viral infection ratio, inhibition of these three pathways is needed.

Titanium dioxide (TiO_2) is an attractive material for the reduction of viral and bacterial infection ratios. TiO_2 undergoes strong oxidization under ultraviolet (UV) irradiation, [8] which can inactivate bacteria and viruses [9–16]. Photocatalysis using TiO_2 is effective in the elimination of toxic substances in water and air [17–19]. The photocatalysis of TiO_2 combined with other metals or ions has been investigated and developed, and combined photocatalysts have been shown to have stronger photocatalytic, antiviral and antibacterial activities compared with those of TiO_2 alone [15,20]. Therefore, a photocatalytic reaction by TiO_2 alone or in combination with a metal or ion is an attractive approach and could be applied to the elimination of bacteria, viruses, and toxic substances.

The potential for blocking the contact pathway described above through TiO₂ photocatalysis has previously been reported, including demonstrations in practice [21,22]. In contrast, the reduction of infection risk by droplet and airborne transmission pathways using a photocatalytic reaction has not been investigated thoroughly. Recently, we developed TiO₂-coated cordierite foam for use in air cleaners [23]. This TiO₂-coated cordierite foam has

Abbreviations: EDS, energy dispersive X-ray spectroscopy; SEM, scanning electron microscopy; TiO₂, titanium dioxide; UV, ultraviolet.

^{*} Corresponding author at: Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan. Tel.: +81 45 787 2679; fax: +81 45 786 5775.

^{0926-3373/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.apcatb.2012.09.012

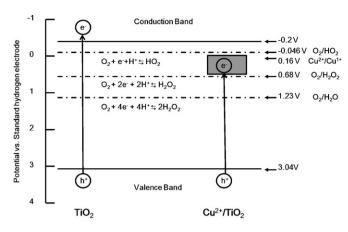


Fig. 1. Schema of the suggested photocatalytic reaction process.

antibacterial activity and achieves the photocatalytic degradation of acetaldehyde. Furthermore, we developed a reliable methodology to confirm the antibacterial properties of TiO_2 -coated cordierite foam [23]. Therefore, we have been able to show that use of TiO_2 -coated cordierite foam in air cleaners reduces the risk of bacterial infection by airborne transmission. However, there are no experimental data to support the antiviral activity of TiO_2 -coated cordierite foam.

We selected copper ion for deposition on TiO₂-coated cordierite foam because copper is known to have antibacterial and antiviral activities [24,25]. Furthermore, copper ion deposited on TiO₂ enhances the photocatalytic activity [15,20]. Antibacterial activity by a combination of Cu and TiO₂ has been reported [20,26,27]. Sunada et al. [27] have shown that the first stage of bacterial inactivation under weak UV exposure is outer membrane degradation by photocatalytic reaction with Cu²⁺ ions infiltrating the cells as the second step. Furthermore, Cu²⁺/TiO₂ shows strong decomposition of acetaldehyde [28]. The suggested photocatalytic reaction process is shown as in Fig. 1 [29]. Deposited Cu²⁺ works as an electron acceptor. Thus, enhanced photocatalytic reaction by deposited Cu²⁺ is beneficial for removal of many organic pollutants.

In the present study, we investigated the antiviral activity of previously developed TiO_2 -coated cordierite foam [23]. Furthermore, we developed Cu^{2+}/TiO_2 -coated cordierite foam, which was expected to have stronger inactivation. As expected, our data showed that Cu^{2+}/TiO_2 -coated cordierite foam had higher antiviral activity compared with that of TiO_2 -coated cordierite foam. We also evaluated the method for measuring the antiviral activity of coated cordierite foam.

2. Experimental

2.1. Bacteriophages and plaque assay

 $Q\beta$ bacteriophage (NBRC 20012), T4 bacteriophage (NBRC 20004), and *Escherichia coli* (NBRC 13965 and NBRC 13168) were used. Nutrient broth (NB) and NB agar media were purchased from BD Biosciences (Franklin Lakes, NJ, USA). Bacteriophage stock was prepared according to the method reported in our previous study [9]. The titer of bacteriophage was calculated by the double agar layer method.

2.2. Legionella pneumophila and colony counting

L. pneumophila (GTC/GIFU 00296) was purchased from the Department of Microbiology, Regeneration and Advanced Medical Science, Graduate School of Medicine, Gifu University (Gifu, Japan). *L. pneumophila* was precultured on charcoal yeast extract medium

agar with α -ketoglutarate (BD Biosciences) at 37 °C for 72 h. A single colony was selected from the precultured plate and cultured at 37 °C for 72 h. Cultured *L. pneumophila* was diluted in 1/500 NB to approximately 10^7 CFU ml⁻¹ and used in experiments.

2.3. Preparation of TiO_2-coated cordierite foam deposited with ${\rm Cu2^+}$ ion

TiO₂-coated cordierite foam was prepared according to the method reported in our previous study [23]. Next, TiO₂-coated or bare cordierite foam was immersed in 250 μ M or 25 mM CuCl₂ solution, washed with distilled water, and dried at 120 °C. The amount of Cu²⁺ coating was 0.8 mg/filter by 250 μ M CuCl₂ solution (about 1 wt%) and 80 mg/filter by 25 mM CuCl₂ solution (about 10 wt%). Chemical elements on the surface of TiO₂-coated and Cu²⁺/TiO₂-coated cordierite foam were analyzed by energy dispersive X-ray spectroscopy (EDS). The structure of the surface of Cu²⁺/TiO₂-coated cordierite foam was examined by scanning electron microscopy (SEM).

2.4. Photocatalytic reaction

Photocatalytic inactivation of *L. pneumophila* was applied as the test method for the evaluation of the antibacterial effect, as in our previous study [23]. For the experiments using bacteriophages, adsorption time and centrifugation conditions were examined using Q β bacteriophage before the photocatalytic reaction. Cordierite foam samples were immersed in 1×10^9 PFU ml⁻¹ Q β bacteriophage solution in SM buffer (0.1 M NaCl, 8 mM MgSO₄, 50 mM Tris–HCl pH 7.5, and 0.1% gelatin) for 6, 10 or 15 min. Each sample was centrifuged for 30 or 60 s at 500 or 3000 rpm. Bacteriophages in the samples were collected in 20 ml SM buffer by vortexing. The collected bacteriophages were diluted in SM buffer and evaluated by plaque assay using the double layer method.

After an appropriate adsorption time and centrifuge conditions, bacteriophages or *L. pneumophila* on each cordierite foam were exposed to 0.1 or 0.25 mW cm^{-2} UV irradiation for 1, 2, 4, 8 and 24 h. After photocatalytic reaction, the bacteriophages were collected and the inactivation ratio was determined by plaque assay. All experiments were repeated more than three times. As a control, bare cordierite foam was used.

3. Results and discussion

3.1. Cu^{2+}/TiO_2 -coated cordierite foam

We developed Cu^{2+}/TiO_2 -coated cordierite foam, in which the presence of Cu²⁺ was confirmed by EDS (Fig. 2). Peaks corresponding to elements derived from bare cordierite foam (C, O, Mg, Al, and Si) were detected in TiO₂-coated cordierite foam and Cu²⁺/TiO₂-coated cordierite foam. A Ti peak was also detected in both cordierite foams. We speculate that the Ti peaks were due to the inclusion of a major anatase phase and a minor rutile phase, although this was not further investigated in this study. We have confirmed a Ti phase in TiO₂-coated cordierite foam in our previous study [23]. Comparison between Fig. 2a and b clearly revealed one difference in the visible peaks: only Cu^{2+}/TiO_2 -coated cordierite foam had a Cu²⁺ peak, which was not visible in TiO₂coated cordierite foam. Although we tried to analyze using X-ray diffraction analysis, it was impossible to detect Cu²⁺ because it was present in low amounts on the filter. Thus, we could confirm that we developed Cu²⁺/TiO₂-coated cordierite foam.

In our previous study, we showed that TiO_2 -coated cordierite foam has a predominantly smooth surface with some rough areas [23]. Fig. 3 illustrates the SEM images of the surface morphology of Cu^{2+}/TiO_2 -coated cordierite foam. We observed a smooth Download English Version:

https://daneshyari.com/en/article/45983

Download Persian Version:

https://daneshyari.com/article/45983

Daneshyari.com