

Available online at www.sciencedirect.com

JOURNAL OF PURE AND APPLIED ALGEBRA

Journal of Pure and Applied Algebra 210 (2007) 577-588

www.elsevier.com/locate/jpaa

A uniform Artin–Rees property for syzygies in rings of dimension one and two

Janet Striuli

Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, USA

Received 12 July 2006; received in revised form 25 September 2006 Available online 28 December 2006 Communicated by A.V. Geramita

Abstract

Let $(R, \mathbf{m}, \mathbf{k})$ be a local Noetherian ring, let M be a finitely generated R-module and let $I \subset R$ be an \mathbf{m} -primary ideal. Let $\mathbf{F} = \{F_i, \partial_i\}$ be a free resolution of M. In this paper we study the question whether there exists an integer h such that $I^n F_i \cap \ker(\partial_i) \subset I^{n-h} \ker(\partial_i)$ holds for all i. We give a positive answer for rings of dimension at most two. We relate this property to the existence of an integer s such that I^s annihilates the modules $\operatorname{Tor}_i^R(M, R/I^n)$ for all i > 0 and all integers n. © 2006 Elsevier B.V. All rights reserved.

MSC: 13C10

1. Introduction

In this paper (R, \mathbf{m} , \mathbf{k}) denotes a local Noetherian ring, and all modules are finitely generated. As general reference we refer to [1,4].

Let *I* be an ideal of *R*, let *M* be an *R*-module and *N* a submodule of *M*. The Artin–Rees lemma states that there exists an integer *h* depending on *I*, *M* and *N* such that for all $n \ge h$ one has

$$I^n M \cap N = I^{n-h} (I^h M \cap N). \tag{1.0.1}$$

A weaker property, which is often the one used in applications, is

$$I^n M \cap N \subset I^{n-h} N. \tag{1.0.2}$$

Much work has been done to determine whether h can be chosen uniformly, in the sense that (1.0.2) would be satisfied simultaneously for every ideal belonging to a given family; see [3,6,8–11]. We study another kind of uniformity.

Theorem 1.1. Let $(R, \mathbf{m}, \mathbf{k})$ be a local Noetherian ring with dim $R \leq 2$. Let M a finitely generated R-module and $I \subset R$ an \mathbf{m} -primary ideal. There exists an integer h such that for every free resolution $\mathbf{F} = \{F_i, \partial_i^{\mathbf{F}}\}$ of M there are inclusions

$$I^{n}\mathbf{F}_{i-1} \cap \ker(\partial_{i}^{\mathbf{F}}) \subseteq I^{n-h} \ker(\partial_{i}^{\mathbf{F}}) \quad \text{for all } i \ge 1 \text{ and all } n > h.$$

$$(1.1.1)$$

E-mail address: jstriuli2@math.unl.edu.

^{0022-4049/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2006.11.012

The main motivation for this work is a theorem due to Eisenbud and Huneke [5, Theorem 3.1]: Let M be an R-module and let $\mathbf{F} = \{F_i, \partial_i^{\mathbf{F}}\}$ be a free resolution of M. If for every non-maximal prime ideal \mathbf{p} of R the $R_{\mathbf{p}}$ -module $M_{\mathbf{p}}$ has finite projective dimension and its rank is independent of \mathbf{p} , then there exists an integer h such that (1.1.1) holds.

To prove Theorem 1.1 we study the annihilators of the modules $\operatorname{Tor}_{i}^{R}(M, R/I^{n})$; see also [5, Proposition 4.1].

Theorem 1.2. Let $(R, \mathbf{m}, \mathsf{k})$ be a local Noetherian ring, let r be an integer and let \mathcal{F} be a family of ideals. Assume that one of the following conditions holds:

(1) dim R = 1, r = 2 and \mathcal{F} is the family of all **m**-primary ideals; (2) dim R = 2, r = 3 and \mathcal{F} is the family of all parameter ideals.

Then there exists an integer h such that

 $I^h \operatorname{Tor}_i^R(M, R/I^n) = 0$

for every *R*-module *M*, every integer *n*, every $j \ge r$ and every $I \in \mathcal{F}$.

In the next section we define syzygetically Artin–Rees modules and study the case where the ring is Cohen–Macaulay. In Section 3 we study uniform annihilators for certain Tor-modules. In Section 4 we prove Theorems 1.2 and 1.1 (see Theorems 4.4 and 4.5) for rings of dimension one, and in Section 5 we prove them (see Theorems 5.4 and 6.1) for rings of dimension two.

2. Syzygetically Artin-Rees modules

Given an *R*-module *M* and $\mathbf{F} = \{F_i, \partial_i^{\mathbf{F}}\}$ a minimal free resolution of *M*, we define $\Omega_i^R(M) := \ker(\partial_{i-1}^{\mathbf{F}})$.

Lemma 2.1. Let *M* be an *R*-module and let *I* be an ideal of *R*. Let *h* be an integer. The following conditions are equivalent:

(1) for every free resolution $\mathbf{G} = \{G_i, \partial_i^{\mathbf{G}}\}$ one has:

$$I^{n}G_{i} \cap \ker(\partial_{i}^{\mathbf{G}}) \subset I^{n-h} \ker(\partial_{i}^{\mathbf{G}}) \quad \text{for all } i > 1 \text{ and all } n > h;$$

$$(2.1.1)$$

(2) for some free resolution $\mathbf{G} = \{G_i, \partial_i^{\mathbf{G}}\}$ inclusion (2.1.1) holds.

Proof. For every free resolution $\mathbf{G} = \{G_i, \partial_i^{\mathbf{G}}\}$, we can write $G_i = F_i \oplus C_i \oplus D_i$, where $\partial_i^{\mathbf{G}}|_{F_i} \subseteq \mathbf{m}F_{i-1}, \partial_i^{\mathbf{G}}(D_i) = 0$ and $\partial_i^{\mathbf{G}}(C_i) = C_{i-1}$. In particular, the inclusion $I^n G_i \cap \ker(\partial_i^{\mathbf{G}})I^{n-h} \ker(\partial_i^{\mathbf{G}})$ holds for all i > 0 and n > h for a free resolution \mathbf{G} of M if and only if it holds for the minimal free resolution \mathbf{F} of M. \Box

Definition 2.2. Let $(R, \mathbf{m}, \mathbf{k})$ be a local Noetherian ring. Let M be a finitely generated R-module, let I be an ideal of R and let h be an integer. An R-module M is *syzygetically Artin–Rees* of level h with respect to I if one of the equivalent conditions of Lemma 2.1 holds.

Let \mathcal{F} be a family of ideals. If there exists an integer *h* such that (2.1.1) holds for every ideal $I \in \mathcal{F}$ then we say that *M* is *syzygetically Artin–Rees* with respect to \mathcal{F} , or simply *syzygetically Artin–Rees* if \mathcal{F} is the family of all ideals.

2.3. Uniform Artin-Rees

Let $(R, \mathbf{m}, \mathbf{k})$ be a local Noetherian ring. Given an *R*-module *M* and a submodule *N*, there exists an integer h = h(M, N) such that $I^n M \cap N \subset I^{n-h}N$, for every ideal *I* of *R* and every n > h. See [6, Theorem 4.12].

Lemma 2.4. Let M be an R-module and let \mathcal{F} be a family of ideals. Then the following hold:

- (1) *M* is syzygetically Artin–Rees with respect to \mathcal{F} if and only if $\Omega_i^R(M)$ is syzygetically Artin–Rees with respect to \mathcal{F} for some integer i > 0.
- (2) Let $R \to S$ be a faithfully flat extension. If $M \otimes_R S$ is syzygetically Artin–Rees with respect to the family of ideals IS where $I \in \mathcal{F}$, then M is syzygetically Artin–Rees with respect to \mathcal{F} .

Download English Version:

https://daneshyari.com/en/article/4598368

Download Persian Version:

https://daneshyari.com/article/4598368

Daneshyari.com