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The number of fourth-order moments which can be obtained 
from a random vector rapidly increases with the vector’s 
dimension. Scalar measures of multivariate kurtosis may not 
satisfactorily capture the fourth-order structure, and matrix 
measures of multivariate kurtosis are called for. In this paper, 
we propose a kurtosis matrix derived from the dominant 
eigenpair of the fourth standardized moment. We show that it 
is the best symmetric, positive semidefinite Kronecker square 
root approximation to the fourth standardized moment. 
Additional properties are derived for realizations from
GARCH and reversible random processes. Statistical
applications include independent component analysis and 
projection pursuit. The star product of matrices highlights 
the connection between the proposed kurtosis matrix and 
other kurtosis matrices which appeared in the statistical 
literature. A simulation study assesses the practical relevance 
of theoretical results in the paper.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let x = (X1, . . . , Xd)T be a real, d-dimensional random vector satisfying
E
(
X4

i

)
< +∞, for i = 1, . . . , d. The fourth moment matrix (henceforth fourth moment, 
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for short) of x is the d2 × d2 matrix M4,x = E
(
x⊗ xT ⊗ x⊗ xT

)
, where “⊗” de-

notes the Kronecker product. It is also the second moment of the vector x ⊗ x, 
and conveniently arranges all the fourth-order moments μijhk = E (XiXjXhXk)
of x, for i, j, h, k = 1, . . . , d. In particular, it admits the block matrix representation 
M4,x = {Bpq}, where Bpq = E

(
XpXqxx

T
)
, for p, q = 1, . . . , d. If the variance Σ of 

x is positive definite, its fourth standardized moment M4,z is the fourth moment of 
z = Σ−1/2 (x− μ), where μ is the expectation of x and Σ−1/2 is the symmetric, positive 
definite square root of the concentration matrix Σ−1.

Statistical applications of the fourth moment include the covariance between quadratic 
forms of random vectors [8], asymptotic distribution of the sample covariance matrix 
(see, for example [15, page 285]), testing for elliptical symmetry [33], robust tests for 
covariance matrices [34], independent component analysis [12], models for multivari-
ate financial data [10]. A variant of the fourth moment, which arranges in a different 
way all fourth-order centered moments of a random vector, appears in portfolio the-
ory [13].

The number of possibly distinct elements in the fourth moment rapidly increases with 
the vector’s dimension, thus impairing the interpretation of the fourth moment itself. For 
example, the fourth moments of 3-dimensional and 6-dimensional random vectors may 
contain 81 and 126 distinct elements. A natural solution would be summarize the fourth 
standardized moment with a scalar function of it, as done by Mardia [24], Malkovich 
and Afifi [23] and Koziol [17]. Unfortunately, scalar functions are more appropriate for 
hypothesis testing than for understanding multivariate kurtosis. Kollo [16] illustrates this 
limitation with two bivariate distributions with very different shapes but with the same 
value of Mardia’s kurtosis.

Matrix-valued functions of the fourth standardized moment would be a reasonable 
compromise between detail and synthesis. Cardoso [5] and Mòri [26] independently 
proposed K = E

(
zT zzzT

)
as a kurtosis matrix. Its statistical applications include 

independent component analysis [5], invariant co-ordinate selection [35] and cluster anal-
ysis [30]. It depends on M4,z only through E

(
Z2
i Z

2
j

)
, for i, j = 1, . . . , d. In order to 

take into account all fourth-order moments, Kollo [16] proposed the kurtosis matrix 
E
(
zT 1d1Td zzzT

)
, where 1d is the d-dimensional vector of ones. Both kurtosis matrices 

greatly reduce the number of kurtosis parameters. For example, the fourth moment and 
the kurtosis matrix of a 6-dimensional random vector might have up to 126 and 21
distinct parameters, respectively.

In this paper, we define a new kurtosis matrix in a different way. Rather than rely-
ing on intuitive arguments, or motivating it with a specific application, we look for the 
symmetric, positive semidefinite d × d matrix which best approximates the fourth stan-
dardized moment, in the Kronecker square root sense [27]. We shall refer to this matrix 
as to eigenkurtosis, as a reminder of its connection with the dominant eigenpair of the 
fourth standardized moment. Other properties follow under additional assumptions, as 
for example reversibility. Statistical applications include kurtosis-based projection pur-
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