The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph $\vec{*}$

Polona Oblak ${ }^{\text {a,* }}$, Helena Šmigoc ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Computer and Information Science, University of Ljubljana,
Večna pot 113, SI-1000 Ljubljana, Slovenia
${ }^{\text {b }}$ School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

A R T I C L E I N F O

Article history:

Received 18 April 2016
Accepted 10 September 2016
Available online 22 September 2016
Submitted by S. Fallat

MSC:

05C50
15A18
15B57

Keywords:

Symmetric matrix
Multiplicity of an eigenvalue
Minimal rank
Graph

A B S T R A C T

In this paper we introduce a parameter $\operatorname{Mm}(G)$, defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of $\operatorname{Mm}(G)$ and compute it for several families of graphs.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Given a simple undirected graph $G=(V(G), E(G))$ with vertex set $V(G)=$ $\{1,2, \ldots, n\}$, let $S(G)$ be the set of all real symmetric $n \times n$ matrices $A=\left(a_{i j}\right)$ such that, for $i \neq j, a_{i j} \neq 0$ if and only if $(i, j) \in E(G)$. There is no restriction on the diagonal entries of A.

The question of characterizing all lists of real numbers

$$
\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}
$$

that can be the spectrum of a matrix $A \in S(G)$, is known as the Inverse Eigenvalue Problem for G. This question and the related question of characterizing all possible multiplicities of eigenvalues of matrices in $S(G)$ have been studied primarily for trees $[6,11,13,14]$. A subproblem to the Inverse Eigenvalue Problem for graphs that has attracted a lot of attention over the years is that of minimizing the rank of all $A \in S(G)$. Finding the minimal rank of G, defined as

$$
\operatorname{mr}(G)=\min \{\operatorname{rk}(A) ; A \in S(G)\}
$$

is equivalent to finding the maximal multiplicity of an eigenvalue of $A \in S(G)$, denoted by $M(G)$. The minimum rank problem has been resolved for several families of graphs. We refer the reader to an excellent survey paper on the problem [8] where additional references can be found. A more recent survey paper [7] not only gives an up-to-date on the minimum rank problem, but it also talks about several of its variants that can be found in the literature. For example, the possible inertia of matrices $A \in S(G)$ has been studied in $[2-4]$ and the minimum number of distinct eigenvalues in [1]. For a matrix A, we let $q(A)$ denote the number of distinct eigenvalues of A. For a graph G, we define

$$
q(G)=\min \{q(A) ; A \in S(G)\}
$$

In [15] we considered the problem of determining for which graphs G there exists a matrix in $S(G)$ whose characteristic polynomial is a square, i.e. the multiplicities of all its eigenvalues are even. This question is closely related to the question of determining for which graphs G there exists a matrix in $S(G)$ with all the multiplicities of eigenvalues at least 2. In this paper we bring this topic further by defining and studying a new parameter for a graph G denoted by $\operatorname{Mm}(G)$. For a matrix $A \in M_{n}(\mathbb{R})$ we denote $\operatorname{Mm}(A)$ to be the minimal eigenvalue multiplicity of A. Then $\operatorname{Mm}(G)$ is defined to be:

$$
\operatorname{Mm}(G)=\max \{\operatorname{Mm}(A) ; A \in S(G)\}
$$

In order words, we define $\operatorname{Mm}(G)$ to be the maximum over the minimal multiplicities of eigenvalues among all $A \in S(G)$. Clearly, $\operatorname{Mm}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ for all nonempty graphs on n vertices. If $\operatorname{Mm}(G)=1$, then all matrices in $S(G)$ must have a simple eigenvalue.

https://daneshyari.com/en/article/4598395

Download Persian Version:

https://daneshyari.com/article/4598395

Daneshyari.com

[^0]: \# This work was supported by Science Foundation Ireland under Grant 11/RFP.1/MTH/3157.

 * Corresponding author.

 E-mail addresses: polona.oblak@fri.uni-lj.si (P. Oblak), helena.smigoc@ucd.ie (H. Šmigoc).

