Ruling out certain 5-spectra for the symmetric nonnegative inverse eigenvalue problem ${ }^{\star}$

C.R. Johnson ${ }^{\text {a }}$, C. Marijuán ${ }^{\mathrm{b}}$, M. Pisonero ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Dept. Mathematics, College of William and Mary, Williamsburg, VA, 23187, USA
${ }^{\text {b }}$ Dpto. Matemática Aplicada, E.I. Informática, Paseo de Belén 15, 47011-Valladolid, Spain
${ }^{\text {c }}$ Dpto. Matemática Aplicada, E.T.S. de Arquitectura, Avenida de Salamanca 18, 47014-Valladolid, Spain

A R T I C L E I N F O

Article history:

Received 3 May 2016
Accepted 14 September 2016
Available online 16 September 2016
Submitted by R. Brualdi

$M S C$:

15A18
15A29
15A42

Keywords:
Symmetric realizability
5-by-5 S-NIEP
Interlacing inequalities

A B S T R A C T

A method is developed to show that certain spectra cannot be realized for the S-NIEP. It is applied in the 5 -by- 5 case to rule out many spectra that were previously unresolved. These are all in the case of 3 positive and 2 negative eigenvalues as all other cases are now resolved. For spectra of the sort we discuss, a diagram is given of the spectra that are excluded here, as well as those trivially realizable, those realizable because of the trace 0 case and those that may also be excluded because of the $\mathrm{J}-\mathrm{L}-\mathrm{L}$ conditions. A small region remains unresolved; it is a very small fraction of the area of those spectra we consider.
© 2016 Elsevier Inc. All rights reserved.

The n-by- n symmetric nonnegative inverse eigenvalue problem, S-NIEP, asks which collections of n real numbers, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, occur as the spectrum of an n-by- n

[^0]symmetric nonnegative matrix, counting multiplicities. Already for $n=5$ this has proven a very challenging problem. In [6] a detailed discussion is given of many parts of the case $n=5$, for positive trace. In the trace 0 case $\left(\sum_{i=1}^{n} \lambda_{i}=0\right)$ such spectra have recently been characterized for $n=5$ [9], but the general (trace ≥ 0) case remains open. It is convenient to categorize by sub-cases, based upon the number of positive eigenvalues. In case that number is 1,4 , or 5 resolution of the 5 -by- 5 S-NIEP is straightforward. In [1], the unresolved cases were narrowed to some with 2 positive eigenvalues and most nontrivial ones with 3 positive eigenvalues. Here, we first note that all cases with 2 positive eigenvalues may be resolved, and then (principally) give a new method to rule out many unresolved spectra with 3 positive eigenvalues. Some ruled out spectra are known to be realizable for the 5 -by- 5 R-NIEP (which only requests a nonnegative, not necessarily symmetric matrix realizing the given eigenvalues).

For both the R-NIEP and S-NIEP, $\sum_{i=1}^{n} \lambda_{i} \geq 0$ is clearly necessary and by the Perron-Frobenius theory $\lambda_{1} \geq\left|\lambda_{n}\right|$, i.e. λ_{1} is the spectral radius, is also necessary. In case $n=4$, these two conditions alone are necessary and sufficient for both the S-NIEP and R-NIEP (this is straightforward and may be found in [5], among other places). In addition, if $\lambda_{1}=\lambda_{2}$, a "tie" for spectral radius, the matrix must be reducible, and the spectrum must be partitionable into (at least) 2 nonnegative spectra in lower dimensions. Another necessary condition, J-L-L [3,5], is based upon traces of powers:

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \lambda_{i}^{k}\right)^{m} \leq n^{m-1} \sum_{i=1}^{n} \lambda_{i}^{k m}, \quad k, m=1,2, \ldots \tag{1}
\end{equation*}
$$

Whenever there is just one positive eigenvalue, it is known that the trace condition is sufficient, as well as necessary for the S-NIEP $[12,2,4]$. When there are just 2 positive eigenvalues, it has been observed [8] that "partitioned majorization" is sufficient for the S-NIEP, i.e. if the nonpositive eigenvalues $\lambda_{3} \geq \lambda_{4} \geq \cdots \geq \lambda_{n}$ may be partitioned into 2 subsets such that the larger sum of the absolute values in one set is no more than λ_{1} and $\lambda_{1}+\lambda_{2}$ is at least $\left|\lambda_{3}\right|+\cdots+\left|\lambda_{n}\right|$. For $n \leq 5$, this condition is also necessary $[5,7,6]$. Note that for $n>5$ this is not true is shown by the spectrum $7,5,-1 / 2,-7 / 2,-4,-4$, which is symmetrically realizable [4, Example 8 with $\delta=1 / 2$] but is not partitionable.

When $n=5$, this leaves the unresolved cases for the S-NIEP (because the cases of 4 or 5 nonnegative eigenvalues are straightforward):

$$
\begin{array}{r}
\lambda_{1}>\lambda_{2} \geq \lambda_{3}>0>\lambda_{4} \geq \lambda_{5} \\
\lambda_{1}+\lambda_{5} \geq 0 \\
\sum_{i=1}^{5} \lambda_{i}>0 \\
\text { and } \quad \lambda_{1}+\lambda_{2}+\lambda_{4}+\lambda_{5}<0 .
\end{array}
$$

https://daneshyari.com/en/article/4598399

Download Persian Version:

https://daneshyari.com/article/4598399

Daneshyari.com

[^0]: * Partially supported by MTM2015-365764-C-1-P (MINECO/FEDER).
 * Corresponding author.

 E-mail addresses: crjohn@wm.edu (C.R. Johnson), marijuan@mat.uva.es (C. Marijuán), mpisoner@maf.uva.es (M. Pisonero).

