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In this paper we review the known facts on isometries of 
Minkowski geometries and prove some new results on them. 
We give the normal forms of two special classes of operators 
and also characterize the isometry group of Minkowski 
3-spaces in which the unit sphere does not contain an ellipse.
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1. Introduction

The one hundred year old concept of “Minkowski space” is a nice topic of recent geo-
metric research. Nevertheless, the phrase “Minkowski space” is applied for two different 
theories: the theory of normed linear spaces and the theory of linear spaces with indef-
inite metric. It is interesting (see [10–12]) that these essentially distinct theories have 
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similar axiomatic foundations. The axiomatic build-up of the theory of linear spaces 
with indefinite metric comes from H. Minkowski [25] and the similar system of axioms 
of normed linear spaces was introduced by Lumer much later in [19]. The first concept 
widely used in physics is the mathematical structure of relativity theory and thus its 
importance is without doubt. On the other hand, the importance of the second theory 
is based on the fact that a large part of modern functional analysis works in so-called 
normed spaces which are more general ones than inner product (or Hilbert) spaces. This 
motivates the introduction of the so-called semi-inner product which is an important 
tool of the corresponding investigations. Of course, in both of these two theories a lot of 
problems can be formulated or can be solved in the language of geometry. Our theme of 
interest is the theory of finite-dimensional, separable and real semi-inner product spaces. 
Such a normed space with the branches of its geometric properties is called Minkowski 
geometry.

Our purpose is to review the possible characterizations of the distinct transformation 
groups of Minkowski geometry, take into consideration the analytic theory and also 
the synthetic geometric-algebraic investigations. Through the paper we prove some new 
statements. We mention Theorem 5 and Theorem 10 which introduce normal forms 
for the adjoint abelian operators and isometries of a Minkowski n-space. Theorem 12
describes the isometry group of a Minkowski 3-space with the property that its unit 
sphere does not contain an ellipse. This latter result generalizes a theorem of H.Martini, 
M. Spirova and K. Strambach proved for non-Euclidean Minkowski planes.

2. Operator theory of Minkowski geometry

A generalization of inner product and inner product spaces was raised by G. Lumer 
in [19].

Definition 1 ([19]). The semi-inner product (s.i.p.) on a complex vector space V is a 
complex function [x, y] : V × V −→ C with the following properties:

s1: [x + y, z] = [x, z] + [y, z],
s2: [λx, y] = λ[x, y] for every λ ∈ C,
s3: [x, x] > 0 when x �= 0,
s4: |[x, y]|2 ≤ [x, x][y, y].

A vector space V with a s.i.p. is an s.i.p. space.

G. Lumer proved that an s.i.p. space is a normed vector space with norm ‖x‖ =
√

[x, x]
and, on the other hand, that every normed vector space can be represented as an s.i.p. 
space. In [8] J. R. Giles showed that all normed vector spaces can be represented as 
s.i.p. spaces with homogeneous second variable. Giles also introduced the concept of 
continuous s.i.p. space as an s.i.p. space having the additional property: For any unit 
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