

Contents lists available at ScienceDirect

Linear Algebra and its Applications

LINEAR ALGEBRA and Its Applications

www.elsevier.com/locate/laa

On maps preserving operators of local spectral radius zero

M. Elhodaibi^a, A. Jaatit^{b,*}

 ^a University Mohammed First, Faculty of Sciences, B.P: 717 60000 Oujda, Morocco
 ^b University Mohammed First, Multidisciplinary Faculty, B.P: 300 62700 Nador, Morocco

ARTICLE INFO

Article history:
Received 3 July 2016
Accepted 1 October 2016
Available online 4 October 2016
Submitted by P. Semrl

MSC:

primary 47B49 secondary 47B48, 47A10, 47A11

Keywords: Linear preserver Quasi-nilpotent part Local spectral radius

ABSTRACT

Let $\mathcal{L}(X)$ be the algebra of all bounded linear operators on a complex Banach space X. We describe surjective linear maps ϕ on $\mathcal{L}(X)$ that satisfy

$$\mathbf{r}_{\phi(T)}(x) = 0 \Longrightarrow \mathbf{r}_T(x) = 0$$

for every $x \in X$ and $T \in \mathcal{L}(X)$. We also describe surjective linear maps ϕ on $\mathcal{L}(X)$ that satisfy

$$r_T(x) = 0 \Longrightarrow r_{\phi(T)}(x) = 0$$

for every $x \in X$ and $T \in \mathcal{L}(X)$. Furthermore, we characterize maps ϕ (not necessarily linear nor surjective) on $\mathcal{L}(X)$ which satisfy

$$\mathbf{r}_{\phi(T)-\phi(S)}(x) = 0$$
 if and only if $\mathbf{r}_{T-S}(x) = 0$

for every $x \in X$ and $T, S \in \mathcal{L}(X)$. © 2016 Elsevier Inc. All rights reserved.

E-mail addresses: hodaibi2001@yahoo.fr (M. Elhodaibi), a.jaatit@hotmail.com (A. Jaatit).

^{*} Corresponding author.

1. Introduction

Let $\mathcal{L}(X)$ be the algebra of all bounded operators on a complex Banach space X. The local spectral radius of an operator $T \in \mathcal{L}(X)$ at a point $x \in X$ is defined by

$$\mathbf{r}_T(x) = \limsup_{n \to +\infty} \| T^n x \|^{\frac{1}{n}}.$$

Recall that the quasi-nilpotent part of an operator $T \in \mathcal{L}(X)$ is given by

$$\mathrm{H}_0(T) := \{ x \in X : \limsup_{n \to +\infty} \parallel T^n x \parallel^{\frac{1}{n}} = 0 \}.$$

The problem of describing linear or additive maps on $\mathcal{L}(X)$ preserving the local spectra has been initiated by A. Bourhim and T. Ransford in [5], and continued by several authors; see for instance [2–4,6–8] and the references therein.

In [8], C. Costara described surjective linear maps on $\mathcal{L}(X)$ which preserve operators of local spectral radius zero at points of X. He showed that if $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ is a linear and surjective map such that for every $x \in X$ and $T \in \mathcal{L}(X)$, we have

$$\mathbf{r}_{\phi(T)}(x) = 0$$
 if and only if $\mathbf{r}_T(x) = 0$,

then there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

This result has been extended by Bourhim and Mashreghi in [4] where it is shown that if ϕ is a surjective (not necessarily linear) map on $\mathcal{L}(X)$ that satisfies

$$\mathbf{r}_{\phi(T)-\phi(S)}(x) = 0$$
 if and only if $\mathbf{r}_{T-S}(x) = 0$,

for every $x \in X$ and $T, S \in \mathcal{L}(X)$, then there are a nonzero scalar $\mu \in \mathbb{C}$ and an operator $A \in \mathcal{L}(X)$ such that $\phi(T) = \mu T + A$ for all $T \in \mathcal{L}(X)$.

In this paper, we start by studying surjective linear maps ϕ on $\mathcal{L}(X)$ such that either

$$H_0(\phi(T)) \subset H_0(T)$$

for all $T \in \mathcal{L}(X)$, or

$$H_0(T) \subset H_0(\phi(T))$$

for all $T \in \mathcal{L}(X)$. This will give characterizations of surjective linear maps ϕ on $\mathcal{L}(X)$, that preserve operators of local spectral radius zero in one direction; i.e.

$$\mathbf{r}_{\phi(T)}(x) = 0 \Longrightarrow \mathbf{r}_T(x) = 0$$

for every $x \in X$ and $T \in \mathcal{L}(X)$, or

Download English Version:

https://daneshyari.com/en/article/4598403

Download Persian Version:

https://daneshyari.com/article/4598403

<u>Daneshyari.com</u>