

The uniform normal form of a linear mapping

Richard Cushman

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

ARTICLE INFO

Article history: Received 14 March 2016 Accepted 20 September 2016 Available online 22 September 2016 Submitted by R. Brualdi

MSC: 15A21

Keywords: Jordan decomposition Jordan normal form Uniform subspace Companion matrix

ABSTRACT

This paper gives a normal form for a linear mapping of a finite dimensional vector space over a field of characteristic 0 into itself, which yields a better description of its structure than the classical companion matrix. Finding this normal form does not use any factorization of the characteristic polynomial of the linear mapping and requires only a finite number of operations in the field to compute.

© 2016 Elsevier Inc. All rights reserved.

CrossMark

Let V be a finite dimensional vector space over a field k of characteristic 0. Let $A: V \to V$ be a linear mapping of V into itself with characteristic polynomial χ_A . The goal of this paper is to determine a normal form for A, which describes its structure better than the classical companion matrix. Finding this normal form does not require knowing a factorization of χ_A and uses only a finite number of operations in the field k to compute.

The main result of [2] gives an algorithm, involving no factorization of χ_A and only a finite number of operations in the field k, which yields the Jordan decomposition of A, namely, writes A as a sum of commuting semisimple and nilpotent S and N parts,

E-mail address: r.h.cushman@gmail.com.

respectively. For more details see [4]. In what follows we will assume that S and N are known.

1. Nilpotent normal form

In this section we describe the well known Jordan normal form for a nilpotent linear transformation N.

A linear transformation $N: V \to V$ is said to be *nilpotent of index n* if there is an integer $n \ge 1$ such that $N^{n-1} \ne 0$ but $N^n = 0$. Suppose that for some positive integer ≥ 1 there is a nonzero vector v, which lies in ker $N^{\ell} \setminus \ker N^{\ell-1}$. The set $\{v, Nv, \ldots, N^{\ell-1}v\}$ is a *Jordan chain* of *length* ℓ with *generating vector* v. The space V^{ℓ} spanned by the vectors in a given Jordan chain of length ℓ is a *N-cyclic subspace* of V. Because $N^{\ell}v = 0$, the subspace V^{ℓ} is *N*-invariant. Since ker $N|V^{\ell} = \operatorname{span}\{N^{\ell-1}v\}$, the mapping $N|V^{\ell}$ has exactly one eigenvector corresponding to the eigenvalue 0.

Fact 1.1. Vectors in a Jordan chain of length ℓ are linearly independent.

With respect to the standard basis $\{v, Nv, \dots N^{\ell-2}v, N^{\ell-1}v\}$ of V^{ℓ} the matrix of $N|V^{\ell}$ is the $\ell \times \ell$ matrix

$\begin{pmatrix} 0\\1 \end{pmatrix}$	$\begin{array}{c} 0 \\ 0 \end{array}$	 0	 	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$
0	1	0	·.	÷
$\left(\begin{array}{c} \vdots \\ 0 \end{array}\right)$: 0	•••• •••	·. 1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

which is a *Jordan block* of size ℓ . The Jordan normal form theorem [1, pp. 270–274] states

Fact 1.2. V is a direct sum of N-cyclic subspaces.

A suitable reordering of the basis giving the Jordan normal form of N is a basis of V, realizes the Young diagram of N. The elements of the Young diagram are given by a dark dot \bullet or an open dot \circ in Fig. 1.1 and the arrows give the action of N on the basis vectors. The columns of the Young diagram of N are Jordan chains with generating vector given by an open dot. The black dots form a basis for the image im N of N. The open dots form a basis for a complementary subspace of im N in V. The dots on or above the *j*th row of the Young diagram form a basis for ker N^j and the black dots in the first row form a basis for ker $N \cap \text{im } N$. Let r_j be the number of dots in the *j*th row. Then $r_j = \dim \ker N^j - \dim \ker N^{j-1}$. Thus the Young diagram of N is unique.

We note that finding the generating vectors of the Young diagram of N or equivalently the Jordan normal form of N, involves solving linear equations with coefficients in the field k and thus requires only a finite number of operations in the field k to be determined. Download English Version:

https://daneshyari.com/en/article/4598407

Download Persian Version:

https://daneshyari.com/article/4598407

Daneshyari.com